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1.1 Sets & Numbers

Introduction

The Smithsonian in Washington, DC is one of the largest museums in the world,
with vast collections of rare and historically significant objects.

For example, it houses the 1903 Wright Flyer and the Apollo 11 Module in the Air
and Space collection.

In other collections you might find Abraham Lincoln’s top hat, an original Kermit
the Frog puppet, or the Hope Diamond. In total, the Smithsonian has more than
200 million fossils, specimens and treasures.

These collections help preserve our nation’s history and culture and are
invaluable to researchers and scientists.

Collections are also important in math, although you seldom find them in a
museum.

Sets

In mathematics, collections are usually called sets. Sets are the foundational
building blocks of modern mathematics.

To create a set, you simply need a way to decide if an object belongs to the set
or not.

One way to do that is to list everything in the set. For example, we know that
traffic lights have three colors: red, yellow, and green. We can list these colors to
form a set: . Sets are always written with curly braces .

redred yellowyellow greengreen{ },, ,,
Another way to represent a set is by drawing a diagram. This is done by making a
big circle and then writing each item of the set inside this circle.

{red, yellow, green} { }

Smithsonian Museum of Natural History, photo by Blake Patterson

https://www.si.edu/object/nasm_A19610048000
https://www.si.edu/object/nasm_A19700102000
https://www.si.edu/object/nmah_1199660
https://www.si.edu/object/nmah_765593
https://www.si.edu/object/nmah_765593
https://www.si.edu/spotlight/hope-diamond
https://www.flickr.com/photos/35448539@N00/8151668486


redred
yellowyellow
greengreen

Visual diagrams like this will be very helpful in later sections where we
investigate relationships between sets.

Set-Builder Notation

Sometimes it's hard to list everything in a set. For instance, whiskers on kittens,
bright copper kettles and warm woolen mittens might be a few of my favorite
things, but listing all my favorites would be impossible.

Luckily, we can describe sets using words rather than listing everything inside
them. This is called set-builder notation.

Using set-builder notation, "all of my favorite things" would be written as

The vertical bar symbol  is shorthand for "such that" or "where". If we put the
set above into words we would read it as "the set of all where  is one of my
favorite things."

Combining Sets

Sets can be combined in two different ways. The first way is to group everything
from both sets together into one big set. This is called the union of the two sets.
In the figure below you can form the union of the two sets by moving the blue
slider.

{x |x is one of my favorite things}

|
x x

QUICK CHECK

1. Is  a valid set?

2. Are  and
 the same set?

3. Describe the set  in words and
list a few items that might be in it.

4. Write the set of all vegetables using set-builder notation.

Apple, Orange, Banana

{Taco, Cat, Goat, Cheese, Pizza}
{Pizza, Cheese, Goat, Cat, Taco}

{x |x is something in your backpack}



To use the interactive figure visit https://www.geogebra.org/m/gtgttdp7

There is a special symbol we use for unions: . If we have two sets,  and ,
then we write their union as 

The second way to combine sets is to only consider items that the two sets have
in common. This is called the intersection of the sets.

To use the interactive figure visit https://www.geogebra.org/m/hq9xagby

The intersection of two sets also has its own symbol: .

If the intersection has nothing in it we say it is empty and use the symbol  to
represent the empty set.

⋃ A B

A⋃B

A⋃B = {x |x is in A or x is in B}

⋂

A⋂B = {x |x is in A and x is in B }

∅

QUICK CHECK

Consider the following sets

1. List everything that would be in .

2. List all the elements of .

3. Describe .

A = {flour, sugar, butter, eggs, milk}

B = {bacon, pancakes, eggs, milk}

C = {peas, carrots, potatoes}

A⋃C

A⋂B

B⋂C

https://www.geogebra.org/m/gtgttdp7
https://www.geogebra.org/m/gtgttdp7
https://www.geogebra.org/m/gtgttdp7
https://www.geogebra.org/m/hq9xagby
https://www.geogebra.org/m/hq9xagby
https://www.geogebra.org/m/hq9xagby


Tally sticks and figurines

from the Swiss Alpine

Museum. Photo by

Sandstein.

Counting

It might be hard to imagine, but people have not always had numbers. The
numbers we use today are actually the result of thousands of years of
innovation and invention.

Surprisingly, sets actually come before numbers. To see why this is the case,
take a look at the following sets. What do they have in common?

These sets are similar because they are the same size. Even though their
contents are different, the quantity of items in each set is identical. In other
words, they have the same number of items.

It's this need to count the objects in a set that sparked the development of
numbers.

Development of Numbers

Undoubtedly fingers were among the earliest counting tools. In fact, the English
the words eleven and twelve come from the Old English words for "one left over"
and "two left over", indicating how many would be left after using all ten fingers.

Over time people developed other tools to help them keep track of their flocks,
herds, and other commodities. These ranged from simple tally marks on a stick
to figurines carved to look like sheep, goats, jars of oil, baskets of grain, and so
on. 

Artifacts in Mesopotamia suggest that about 10,000 years ago the Sumerians
started using clay tokens shaped to resemble the items they were exchanging,
one token for each item. Soon these tokens were replaced by drawing shapes on
clay tablets.

1
1

https://commons.wikimedia.org/wiki/File:SAM_PC_1_-_Tally_sticks_1_-_Overview.jpg
https://commons.wikimedia.org/wiki/File:SAM_PC_1_-_Tally_sticks_1_-_Overview.jpg


This 5000 year-old clay

tablet is one of the first

artifacts in history to

display numerical symbols.

It records how much beer

should be paid to a

particular worker for his

labor. Photo courtesy of

the British Museum

Eventually symbols (numerals) were created for specific quantities which
eliminated the need to make one mark for each item. It was at that point,
around 5000 years ago, that the first number system was born. 

The Sumerian system did not look like the one we use today. They counted using
groups of 60 (which is why we have 60 minutes in an hour) and different symbols
than what we are used to.

The numbers we use today originated in India and were later adapted by Arab
scholars. Because of it's origins our number system is called the Hindu-Arabic
system.

It wasn't until the 15th and 16th centuries that Europe began to embrace Hindu-
Arabic numerals. Subsequent colonization, commerce and scholarly
communication have spread the system across the world.

Natural Numbers and Integers

The numbers we are most familiar with are the counting numbers .

The set of counting numbers is also known as the natural numbers and is
represented by the symbol . In set notation we would say

You might already know that when we add two natural numbers the result is
also a natural number. For example,  and  are both natural numbers and so is

.

But what if we subtract one natural number from another, is the result always in
? Clearly not, since subtraction can result in negative values.

The set that combines  with  and all the negative natural numbers
 is called the set of integers and is represented by the symbol .

We can add and subtract integers as much as we like and the result will always
be an integer.

Rational Numbers

While multiplying two integers always results in another integer, division is more
complicated.

2
2

1, 2, 3, 4, . . .

N

N = {1, 2, 3, . . . }

3 5
3 + 5 = 8

N

N 0
{. . . , −3, −2, } Z

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . . }

QUICK CHECK

1. True or False:  is an integer.

2. True or False:  is a natural number.

3. True or False: If you multiply two integers you always get another
integer.

5

0

http://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=327218&partId=1
http://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=327218&partId=1


If  and  are integers, then the fraction  could be an integer, but it doesn't

have to be. For instance  is an integer, but  is not.

The set that contains all the fractions, or ratios, of integers, is called the set of
rational numbers, or .

Since division by  is not well defined, ratios like  and  are undefined and

not included in the set of rational numbers.

Also notice that since any integer can be written as a fraction, the set of rational
numbers includes all of the integers.

Rational numbers may be written as fractions or as decimals. The decimal
expansion of a rational number will either terminate or eventually have a
pattern that repeats forever, as these examples illustrate:

The set of rational numbers is special because you can add, subtract, multiply
and divide as much as you want and never end up with a different type of
number---the answer will always be a rational number.

Real Numbers

Since the rational numbers are closed under addition, subtraction, multiplication
and division, it might come as a surprise that other types of numbers exist and
are essential to mathematics. The discovery of one new type of number is
attributed to an associate of Pythagoras whose name was Hippasus of
Metapontum.

p q
p

q

= 36
2

5
2

Q

Q = { ∣∣∣ p and q are integers with q ≠ 0} .
p

q

0 4
0

−2
0

= 0.1875 decimal terminates

= 0.¯̄̄3 decimal repeats

= 0.
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
142857 decimal repeats

= 2 decimal terminates

3

16

1
3

1
7

10

5

QUICK CHECK

1. Find three different ways to write  as a rational number.

2. Write  as a rational number.

3. Write  as a rational number.

4. Write  as a rational number.

7

1.5

+3
2

5
6

÷3
2

5
6



 
1

1

2

According to legend, Hippasus was trying to measure the diagonal of a 1 by 1
square . He knew from the Pythagorean theorem that the answer was , but
had been unable to find a rational number that was equal to  when you square
it.

Eventually he proved that  cannot be written as a ratio of any two integers
and concluded that it must belong to a set of irrational numbers.

Some accounts say that the other Pythagoreans were so shocked by Hippasus'
discovery that they drowned him in the Mediterranean Sea in an attempt to hide
irrational numbers from the world.

Even though irrational numbers cannot be written as fractions, we can still
represent them as decimals. The decimal expansion of an irrational number
never ends and never repeats. For example, .

The union of the rational and irrational numbers is called the set of real
numbers, . In other words, the set of real numbers includes every type of
number we've discussed so far.

For example, , , , , and  are all real numbers.

The set of real numbers is closed under all standard operations including
powers and some roots. In fact, you can do just about anything to a real number
and the result will still be a real number, as long as you do not take the square
root of a negative value, something we will look into in a later chapter.

3
3√2

2

√2

√2 ≈ 1.414213562...

R

−0.5 √2 7
3

−0.248 8.
¯̄¯̄¯̄¯̄
261

QUICK CHECK

1. True or False:  is a real number.

2. True or False:  is a real number.

3. True or False:  is a real number.

23 + 9.5 − 8

√2

6

81−34

√16 − 4(15)

http://chapter-5/5.2#imaginary-numbers


The Real Number Line

It is often helpful to visualize the set of real numbers with a number line, which
is nothing more than a straight line with marks representing the location of
numbers.

0 1 2 3 4-1-2-3-4

Positive numbers are always on the right side of zero, negative numbers are
always on the left, and arrows indicate that the line continues in both directions.

Every real number has a place on the number line, and every location on a
number line is assumed to correspond to a real number. Here are a few real
numbers and their relative locations on the number line.

0 1 2 3 4-1-2-3-4

0.2 π14 2⅝

Intervals of Real Numbers

The set of all values in between two numbers is called an interval. For instance,
all of the numbers between  and  make an interval.

There are several ways to describe this interval. One way is to use inequalities
and write it as a set.

Another option is to color the interval on a numberline

Open circles indicate that the numbers  and  are not included in the interval.

A third option is to use interval notation, which is a written abbreviation of the
number line. In this example the interval notation would be

Notice that this mirrors the number line by having the lowest number on the
left, with parenthesis taking the place of the open circles.

Other intervals might include an end point or even extend out toward infinity.
For example, the interval of all numbers greater than or equal to  can be
described in any of the following ways

set notation:

number line:

interval notation:

0 3

{x | 0 < x < 3}

0 3

(0, 3)

−2

{x| − 2 ≤ x < ∞}



There are a few subtleties here that deserved to be highlighted. First, when an
endpoint is included, (1) the inequality in set notation includes an equal sign, (2)
the circle on the number line is filled in, and (3) the parenthesis in interval
notation changes to a square bracket.

Second, to indicate that an interval continues out toward infinity we use an
arrow pointing in the appropriate direction. Since nothing equals infinity we
must always use a parenthesis when writing that part of the interval.

Combining Intervals

Since intervals are sets of real numbers, they can be combined using unions and
intersections.

As before, the union is the all of the two intervals joined together, while the
intersection is just where two intervals overlap each other. A few examples will
illustrate the idea.

Suppose we have the following intervals. What will the union look like? Move the
blue slider to see the union.

To use the interactive figure visit https://www.geogebra.org/m/fysebmbd

Once we've identified the union on the number line, it's much easier to write it
in interval notation.

The intersection of the same two intervals is smaller, since it is only where they
overlap. You can explore the intersection in the figure below.

[−2 , ∞)

QUICK CHECK

1. Sketch the interval  on a number line.

2. Sketch the interval  on a number line.

3. Write the following interval in both set notation and interval notation.

{x | − 1 < x ≤ 4}

[5, 8)

(−1, ∞)⋃[−3, 0) = [−3, ∞)

https://www.geogebra.org/m/fysebmbd
https://www.geogebra.org/m/fysebmbd
https://www.geogebra.org/m/fysebmbd


To use the interactive figure visit https://www.geogebra.org/m/bhwanhyg

Now that we can see the intersection visually, the notation follows naturally.

Order of operations

In elementary school students are often asked to add several numbers together,
such as . What is seldom discussed is the fact that we can't
technically add three numbers at once.

Addition, like the other basic operations, is a "binary" operation--it only works on
two numbers a time. To avoid confusion, when multiple operations are needed
there is a standard order that should be followed.

The order of operations we use today is sometimes remembered by the
acronym P E MD AS, which stands for

1. Parentheses (including brackets and fraction bars)

2. Exponents (including roots)

3. Multiplication and Division

4. Addition and Subtraction

When several of these operations are combined, operations higher on the list
should be dealt with before those lower on the list.

And if an expression has more than one operation with equal priority (like
multiplication and division or addition and subtraction) then you work with them
in the order they appear from left to right. For instance, if we have ,
then we start from the left and first do , which is , and then multiply that
by , giving us .

(−1, ∞)⋂[−3, 0) = (−1, 0)

QUICK CHECK

1. Sketch the intersection of two intervals shown below

2. Find .[−2, 5)⋃(3, 10]

4 + 10 + 5 = 19

20 ÷ 5 × 2
20 ÷ 5 4

2 8

https://www.geogebra.org/m/bhwanhyg
https://www.geogebra.org/m/bhwanhyg
https://www.geogebra.org/m/bhwanhyg


QUICK CHECK

1. Calculate 

2. Evaluate .

3. Evaluate 

4. True or False: 

5. True or False: 

12 − 3 + 5

8 − 7(2 + 1)

4+2(5)

7

= +8
4+2

8
4

8
2

(a + b)2 = a2 + b2



1.2 Functions

Introduction

Each button on a vending machine corresponds to a particular snack inside the
machine. The item you get depends on the button you push. When you press the
button for a soda the machine should give you that soda, if it is functioning
properly.

In this section we'll see that mathematical functions connect things in a similar
way.

The Definition of a Function

While no single definition can capture the full extent of the function concept, it is
still important to start with one. The following definition was developed in the
early 1900's and is stated in terms of sets.

Notice that this definition has three parts: (1) a set of inputs called the domain,
(2) a set of outputs called the range and (3) the rule that links them together.

This is just like a vending machine where there is a set of buttons, a set of
snacks, and the internal workings of the machine that link the two.

DEFINITION

A function is any rule that matches each element from one set to exactly
one element in another set. The set of inputs is called the domain of the
function while the range is the set of all its output values.

Soda Vending Machine Japan Coast, photo by slackrhackr

https://commons.wikimedia.org/wiki/File:Soda_Vending_Machine_Japan_Coast.jpg


Perhaps a diagram would help illustrate this. If  is in the domain and  is in the
range, then we can draw the function as a mapping diagram, like the one below.

 
x

 
y

Domain Range

f

Let's look at a specific example. Suppose three friends went to a deli and each
ordered a sandwich, as in the diagram below.

Lisa
Chad
Kristi

Ham
Egg Salad

Veggie
Tuna

People Sandwiches

Since each person is linked to just one sandwich, this is a function.

In general, anytime we can match each item from one set to just one item
another set, then we have a function.

In the figure below you can change the arrangement of the arrows by moving
the blue points. Experiment until you feel confident that you can recognize what
is and what is not a function.

To use the interactive figure visit https://www.geogebra.org/m/tm4yf6r7

x y

https://www.geogebra.org/m/tm4yf6r7
https://www.geogebra.org/m/tm4yf6r7
https://www.geogebra.org/m/tm4yf6r7


Function Notation

When there is a function relationship between  and  it is common practice to
replace  with  and say that . This is known as function notation.

 
x

 
f ( x )

Domain Range

f

When said aloud the notation  is read "  of ". This notation reminds us
that the output  is the result of putting the input  inside of the function .

In fact, it can be helpful to think of a function as a machine that changes an
object  into something new .

QUICK CHECK

1. Does this diagram represent a function? If so, also identify the
domain and range.

Lisa
Chad
Kristi

Ham
Egg Salad

Veggie
Tuna

People Sandwiches

2. Does this diagram represent a function? If so, also identify the
domain and range.

Lisa
Chad
Kristi

Ham
Egg Salad

Veggie
Tuna

People Sandwiches

x y
y f(x) y = f(x)

f(x) f x
f(x) x f

x f(x)



x
input

f (x)
output

f
function

Suppose, for example, that pressing the button  on a vending machine gives
you a bag of potato chips. Using function notation we might write

.

With function notation the choice of letters is completely arbitrary. For example,
if a function always adds  it makes no difference whether we refer to it as

 or as  or as . It is what a function does
that matters, not what it is called.

B4

f(B4) = potato chips

3
f(x) = x + 3 g(x) = x + 3 w(t) = t + 3

QUICK CHECK

Suppose that the function  gives you the cost in dollars of a Volkswagen
Beetle based on its age  in years.

1. Are the inputs dollars or years?

2. Are the outputs dollars or years?

3. Describe the difference in meaning between  and
. Which one is more reasonable?

C
t

C(50) = 2000
C(2000) = 50

Volkswagen Beetle photo by Doug Maloney on Unsplash

https://unsplash.com/photos/PUmAQ2sTGMY


Evaluating & Solving

The process of finding the output for a particular input is called evaluating the
function. Evaluating is sometimes confused with solving, which is
understandable since they are like two sides of a coin. To evaluate we start with
an input and find the output. Solving is the reverse process, we are given an
output and must find the input.

Perhaps seeing this in the context of our vending machine analogy will help.
Evaluating is like choosing a button on the vending machine (the input) and
getting a snack (the output). Solving, on the other hand, is like knowing the
snack you want and figuring out which button to press to get it.

Consider the function shown in the table below.

A2 chocolate bar

A3 bubble gum

B4 potato chips

C1 root beer

C2 granola bar

D3 pretzels

To evaluate  we simply find the value of  when . From the table it
appears that .

To solve , however, we scan the table in the opposite direction,
looking for an  that creates  as an output. The solution is .

If a function is defined by an equation, such as , then we
evaluate it by replacing every  with the given input value. To find , we
insert  everywhere we see an  and simplify, if possible.

We now know that .

A function can be evaluated even if we do not get a numerical result. Evaluating
 or  would mean substituting each  with the expression  or

.

x y = f(x)

f(A2) y x = A2
f(A2) = chocolate bar

f(x) = root beer
x root beer x = C1

f(x) = 2x2 − 6x
x f(10)

10 x

f(10) = 2(10)2 − 6(10)

= 200 − 60
= 140

f(10) = 140

f(x2) f(t + 2) x x2

t + 2



Representations of Functions

Because functions are so widely used, there are many different ways to
represent them. We have already encountered functions shown by mapping
diagrams and equations. We'll also see functions written as tables, sets of
points, sequences of operations, and graphs.

Each way to visualize a function highlights something special about the function,
and switching from one to another can help us see different features and
discover connections that might have been hidden otherwise.

Of primary importance is the connection between equations, tables and graphs.

Graphs of Functions

The graph of a function is the set of all points  where each  is found by
evaluating the function's equation, since .

For instance, to graph the function  we randomly choose a
handful of values for  and evaluate the function for each one, creating a table
of values.

QUICK CHECK

1. Evaluate  if .

2. If , what is ?

3. For the function shown below, what is ?

A
B
C

-2
5

18
42

Domain Range

D

4. Using the same function diagram as above, what is the solution to
?

f(2) f(x) = x − 3

g(x) = x2 + 6x g(😀)

f(5)

f(x) = D

(x, y) y

y = f(x)

f(x) = x2 − 3
x



Then we convert those values into ordered  pairs

that can be plotted and connected with a smooth curve.

Even though calculators and apps can graph most functions, graphing functions
by hand is still an important skill to practice.

The Vertical Line Test

It is important to remember that not every relationship or rule defines a
function. The key is that each input corresponds to just one output. This applies
to graphs as well.

In order for a graph to be a function each  can only correspond to one . This
means that no two points on the graph can share the same -coordinate.

A quick way to test this is to imagine drawing vertical lines across it. If any line
hits the graph more than once, it's not a function. For obvious reasons, this is
called the vertical line test.

x f(x) = x2 − 3

−2 (−2)2 − 3 = 1

−1 (−1)2 − 3 = −2

0 (0)2 − 3 = −3

1 (1)2 − 3 = −2

2 (2)2 − 3 = 1

3 (3)2 − 3 = 6

(x, y)

{(−2, 1), (−1, −2), (0, −3), (1, −2), (2, 1), (3, 6)}

QUICK CHECK

Sketch a graph of the function .f(x) = x + 12
3

x y
x



In each of the figures below there is a blue vertical line. Apply the vertical line
test to each graph by moving the vertical line across the graph.

To use the interactive figure visit https://www.geogebra.org/m/r9g6gyym

The vertical line test is very useful, but we must make sure we can see the entire
graph.

Evaluate Functions Using Graphs

When a function is defined by a graph we evaluate the function by reading off
the  coordinate that matches the given  value.

In the figure below you can move the INPUT  value which will change the
OUTPUT  value.

To use the interactive figure visit https://www.geogebra.org/m/lQTU2l1r

To evaluate , for example, move the INPUT to  and read off the
corresponding OUTPUT on the -axis. In this case, .

So to use a graph to find a function's output, just find where your input value
meets the graph. The height of that point is your answer.

Solving reverses the process-we find  when given a specific . As an example, to
solve  for  you move the INPUT until the OUTPUT equals . Then you
record the INPUT. Here there are multiple values for  that work: ,

, and  all appear to give outputs of , and would be valid solutions
to .

QUICK CHECK

1. Does the equation  define  as a function of ?

2. If , is  a function of ?

3. Use a graph to decide if the equation  defines  as a
function of .

y = 2x − 3 y x

x + 2y = 4 y x

x2 + y2 = 3 y
x

y x

x
y

f(5) x = 5
y f(5) = 4

x y
f(x) = 4 x 4

x x = 1.7
x = 4 x = 11.7 4

f(x) = 4

https://www.geogebra.org/m/r9g6gyym
https://www.geogebra.org/m/r9g6gyym
https://www.geogebra.org/m/r9g6gyym
https://www.geogebra.org/m/lQTU2l1r
https://www.geogebra.org/m/lQTU2l1r
https://www.geogebra.org/m/lQTU2l1r


Domain of a Function

Every time we identify a function we should also determine its domain. Recall
that the domain is like the list of buttons on a vending machine: it's all the
possible input choices you have.

When a function is defined by a table, a diagram or a set of points, then we can
list each individual thing in the domain, like we did in the sandwich and vending
machine examples earlier.

When a function is defined by an equation, the domain is every real number that
produces a real number output.

For instance, if  then the domain is any real number greater than or
equal to zero, since square roots of negative values are not real numbers. This
can be written as an interval  or with set-builder notation .

Similarly, the domain of  is every real number except zero, since
division by zero is undefined. Writing this as an interval is a bit tricky since we
have to use a union: . With set-builder notation we simply say
which  values cannot be used: .

As this example shows, it is often easiest to say what is not in the domain.
Specifically, we must always eliminate from the domain any numbers that result
in division by zero and even roots of negative numbers.

Looking Ahead

Until we gain familiarity with several different types of functions, it will be
difficult to determine the range of a function by inspecting its equation. We will
have more success if we work with its graph instead.

Graphs are also one of the best ways to determine the domain of a function. In
fact, we can learn a lot about a function from looking at its graph. This will be
the focus of the next section.

f(x) = √x

[0, ∞) {x|x ≥ 0}

g(x) = 1
x

(−∞, 0)⋃(0, ∞)
x {x|x ≠ 0}

QUICK CHECK

1. Explain why the domain of  is .

2. What is the domain of ?

3. Find the domain of .

f(x) = 1
x2−9

{x|x ≠ ±3}

g(x) = √x − 5

h(x) = 3√x



1.3 Graphs of Functions

Intro

If you've ever ridden a roller coaster you know how it feels to crawl up a hill and
rocket down the other side. You also know how your stomach floats at the top
and sinks at the bottom. It would be a very boring ride if the track never
changed direction. The twists and turns, peaks and valleys make a roller coaster
exciting and give it character.

The same can be said for functions: they wouldn't be interesting (or very useful)
if they didn't change.

In this section you will learn to recognize features of a function by looking at a
graph, in much the same way that you could pick out the loops and dips of a
roller coaster from a photograph.

Graphing Functions with Technology

When we first encounter a new function we will generally want to see its graph.
The equation will also be an essential tool, but lots of information can be
gleaned from a quick look at the graph.

In the previous section we showed how the equation of a function can be used
to create a table of values that can be plotted to create a graph. While knowing
how to do that by hand is a useful skill, the technology available today makes
exploring graphs of functions much simpler.

Between a graphing calculator, apps on your phone, and dedicated websites like
Desmos.com or Geogebra.org, we will assume that you able to use technology to
draw a graph of a function.

This section will help you read the graph of function and identify the features
you see.

Roller coaster photo by dlohner on Pixabay

https://www.desmos.com/calculator
https://www.geogebra.org/classic
https://pixabay.com/en/roller-coaster-amusement-park-3100041/


Increasing, Decreasing and Constant

When we read the shape of a function's graph, we always read from left to right,
just like we read words in a sentence. For instance, a function increases if its
graph goes up as we move from left to right and decreases if it goes down.
These behaviors are also referred to as growth and decay, respectively. If the
graph is flat then the function is constant on that interval; it does not grow or
decay.

Consider the following graph.
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This function is increasing on the interval , constant on , decreasing
over the interval  and increasing again on .

Maximums and Minimums

Any point where a function changes from increasing to decreasing is known as a
local maximum. On a graph it looks something like this.

(a, b) (b, c)
(c, d) (d, e)

QUICK CHECK

Determine the regions where the graph below is increasing, decreasing or
constant.

A

B C



local maximum

a

f (a)

If  has a local maximum at , then  is greater than any other function
value in its immediate neighborhood, to the left or right.

If it turns out that  is the largest value of the function over its entire domain,
then  is called a global maximum

Likewise, the point where a function changes from decreasing to increasing is
called a local minimum.

local minimum

b

f (b)

If  has a local minimum at , then  is less than any other function
values in the immediate neighborhood.

If it happens that  is the lowest value over the entire domain of the function,
then  is called a global minimum.

Maximum and minimum points are important in many real life applications. For
instance, we might want to minimize cost, or maximize fuel efficiency, or
minimize waste.

The process of finding exact maximum and minimum values is called
optimization and is properly studied in calculus. For our needs, however, a visual
inspection of the graph will usually be accurate enough. When more precision is
needed, the maximum  and minimum  commands found on most graphing
utilities can be used.

f x = a f(a)

f(a)
f(a)

f x = b f(b)

f(b)
f(b)



Intercepts

In addition to maximum and minimum points, we should also look for points
where the graph intersects the axes. The point where the graph crosses the y-
axis is called the y-intercept. An x-intercept is a point where the graph
intersects the x-axis.

y-intercept

x-intercept

Both of these concepts should be familiar to you from earlier algebra courses.
The only new thing to be aware of is that x-intercepts will sometimes be called
real zeros. This is because those x-values are real numbers that make the
function equal to zero.

QUICK CHECK

Use the graph below to answer the questions that follow.

1. At which  value does the function obtain a local maximum? What is
value of the local maximum?

2. At which  value does the function obtain a local minimum? What is
value of the local minimum?

3. At which  value does the function obtain a global minimum? What is
value of the global minimum?

x

x

x



Concavity

Another important feature of a graph is its curvature, also known as its
concavity. If a graph bends up, as if to form the side of a cup, then we say it is
concave up on that interval. If the graph bends down, like a frown, then it is
concave down. If the graph is straight then it does not bend and does not have
any concavity.

Decreasing at a
decreasing rate

Increasing at an
increasing rate

Concave Up

Increasing at a
decreasing rate

Decreasing at an
increasing rate

Concave Down

Note that concavity does not tell us if a graph is increasing or decreasing.
Instead, it gives us information about how quickly, or slowly, that change is
happening.

For instance, a function that is both increasing and concave down will see its
rate of growth slow down. But the growth rate of an increasing, concave up
function will speed up. Rates of change will be studied in detail in the next
section.

QUICK CHECK

Decide if the following statements are True or False.

1. True or False: The x-coordinate of a y-intercept is .

2. True or False: The y-coordinate of an x-intercept is .

3. True or False: A function can have several y-intercepts.

4. True or False: A function can have several x-intercepts.

5. True or False: A "real zero" is the same thing as an x-intercept.

0

0

http://localhost:1313/1.4#rates-of-change
http://localhost:1313/1.4#rates-of-change


Asymptotes

Sometimes a function increases (or decreases) without bound toward infinity as
it approaches a particular  value. When this happens we say the function has a
vertical asymptote at that  value. In this example there is a vertical
asymptote at .

Ver�cal Asymptote at x= - 1

Formally, the vertical line  is a vertical asymptote of a function if 
approaches either positive or negative infinity as  gets near to ,. This is
sometimes written  as .

We will use dotted vertical lines to indicate vertical asymptotes. Very few
graphing utilities will draw asymptotes. You will have to infer their locations
from the shape of the graph.

It is also possible for a function to eventually level off to the left or to the right.
When this happens we say the function has a horizontal asymptote. In the
example below, the function has a horizontal asymptote at .

QUICK CHECK

1. Identify the regions where the following graph is concave up and
concave down.

x
x

x = −1

x = c f(x)
x c

f(x) → ±∞ x → c

y = 3



Horizontal Asymptote at y= 3

Technically speaking, the horizontal line  is a horizontal asymptote of a
function if  as .

Horizontal asymptotes describe a type of end behavior of a function. The end
behavior of a function is how the function changes as  approaches positive
infinity or negative infinity. When looking for end behaviors, it doesn't matter
how the function behaves in any local neighborhood, it only matters what
happens far out at the ends. We will see functions with various combinations of
increasing, decreasing and leveling off end behaviors.

Since a function can only have two end behaviors (one as  and another
as ), a function can only have, at most, two horizontal asymptotes.
There is no such limit on the number of vertical asymptotes.

y = k
f(x) → k x → ±∞

x

x → ∞
x → −∞



Complete Graphs

A graph that indicates all the important features of a function is called a
complete graph. If a function has any intercepts, asymptotes, maximums
and/or minimums, then those should be visible on a complete graph.

Creating a complete graph can be a difficult adventure. Very few, if any, graphing
programs will automatically give you a complete graph. However, they all have
commands for zooming in and out and changing the viewing window.

As you learn more about different types of functions, you will be able to reduce
the amount of guess work by recognizing how elements of the equation affect
the shape of the graph. For now, however, you will want to experiment with the
different zoom and window commands available.

Determine Domain and Range from a Graph

A complete graph can help us identify the domain and range of a function. Since
each point on the graph has an  and a  coordinate, the domain and
range are the spread of the  and  values, respectively.

For instance, a complete graph of  is shown below.

QUICK CHECK

Try to identify each of the following behaviors. Click the arrows to check
your answers.

1. y-intercept

2. x-intercepts

3. Maximums

4. Minimums

5. Vertical Asymptotes

6. Horizontal Asymptotes

See all

x y = f(x)
x y

f(x) = x2 − 3



Domain

Ra
ng

e

Since the graph continues to expand in the x-direction, its domain is the set of
all real numbers  or the interval  or as ausing set-builder
notation . The  values start at  and continue upward, so the range is
the set  or the interval .

Let's look at another example. Suppose the following is a complete graph of a
function.

{x |x is in R} (∞, ∞)
y y = −3

{y | y ≥ −3} [−3, ∞)

QUICK CHECK

1. Determine the domain and range of the function shown below.
Assume the graph is a complete graph.



In set notation the

domain is

 and the

range is

Domain

Ra
ng

e

You might recall that solid dots are always considered part of the graph. Hollow
dots, on the other hand, are used to indicate points that are not part of the
graph. Here the domain is the interval  and the range is . 

If the graph has asymptotes then the domain and range might require the union
of several intervals. In this case, the vertical asymptotes indicate that the values

 and  are not in the domain.

(−2, 2] (−2, 4] 4 4

{x | − 2 < x ≤ 2}

{y | − 2 < y ≤ 4}
QUICK CHECK

1. Determine the domain and range of the function shown below.
Assume the graph is a complete graph.

x = −1 x = 1
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The domain is split into three intervals that we union together:
. The horizontal asymptote doesn't impact the

range, since the center section rises above the asymptote, so our range is
.

Graphs of Basic Functions

Below you will be introduced to six basic functions that you should learn by
heart. Use the provided graphs to look for important behaviors. Click the link
below each graph to check your answers or refer to this downloadable
summary.

The Identity Function

The identity function  is special because the output is always the same
as the input, for example  or . Its graph is the diagonal line
through the origin with a slope of .

-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

f (x )=x

Iden�ty Func�on

Identity Function Properties

(−∞, −1)⋃(−1, 1)⋃(1, ∞)

(−∞, 4]

f(x) = x
f(5) = 5 f(87) = 87

1

http://localhost:1313/img/chapter-1/Six_Basic_Functions.pdf
http://localhost:1313/img/chapter-1/Six_Basic_Functions.pdf


The Square Function

The square function  returns the square of every input, for example

. Its graph is a parabola touching the origin.

With negative inputs it is best to include parenthesis like this
 to get the correct values.

-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

f (x )=x 2

Square Func�on

Square Function Properties

The Square Root Function

The principal square root function  evaluates the square root of non-
negative inputs only, it is not defined for negative values.

Most calculators have a dedicated button for computing square roots. Its graph
starts at the origin.

-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

Square Root Func�on

f (x) = x

Square Root Function Properties

f(x) = x2

f(3) = 32 = 9

f(−2) = (−2)2 = 4

f(x) = √x



The Cube Function

The cube function  produces the cube of any input, which is simply

that number multiplied by itself three times. For instance,  since
.

Most calculator do not have a dedicated button for the cube function, instead
you must enter something like 2^3  to cube .

-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

Cube Func�on

f (x) =x 3

Cube Function Properties

The Cube Root Function

Many calculators have a command somewhere that will evaluate the cube root
function  but it might be hard to find.

It is often easier to use the rule of exponents  to evaluate cube roots.
For example 125^(1/3)  would give the cube root of .

-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

Cube Root Func�on

f (x) = x3

Cube Root Function Properties

f(x) = x3

f(2) = 23 = 8
2 × 2 × 2 = 8

2

f(x) = 3√x

3√x = x1/3

125



The Reciprocal Function

The reciprocal function  takes any number (except ) as an input and
returns the reciprocal of that number. The easiest way to remember what a
reciprocal is, is to see a few examples.

The reciprocal of  is .

The reciprocal of  is .

The reciprocal of  is .

You might recall that  is a rule of exponents. Because of that, many

calculators have a button labeled  which will compute the reciprocal of a
number.

Reciprocal Func�on

1 2 3 4

4

3

2

1

-3 -2 -1
-1

-2

-3

-4

-4

f (x) = x
1

Reciprocal Function Properties

Looking Ahead

These six basic functions form a library that we will use to explore several
different topics. Since they are building blocks for more complicated ideas, you
will be expected to memorize their basic properties. This downloadable
summary will help your study.

f(x) = 1
x

0

3
2

2
3

5 1
5

−6
7

−7
6

= x−11
x

x−1

http://localhost:1313/img/chapter-1/Six_Basic_Functions.pdf
http://localhost:1313/img/chapter-1/Six_Basic_Functions.pdf


1.4 Transformations of Functions

Introduction

When making ice cream, chefs often start with a basic recipe and then add in
different amounts of special ingredients, like macadamia nuts or dark chocolate
or berries. Experienced chefs know the effect that each addition will have before
they even taste the finished product.

In a very similar way, we can take basic functions and transform them into new
functions by mixing in constants. As you gain experience you will be able to
predict the behavior of a transformed function without graphing it. You will also
learn to construct the equation for a function given its graph.

Given a generic function  and any constant number , there are four ways to
combine them to form a new function. We could

1. Add  to the function value .

2. Add  to the input value .

3. Multiply  by .

4. Multiply  by .

We will use interactive figures to explore each of these combinations. Pay special
attention to how both the graph and the equation change as you apply the
transformation. It may even help to keep track of one or two points and
compare their locations before and after the transformation.

f c

c f(x) f(x) + c

c x f(x + c)

f(x) c c f(x)

x c f(c x)

Ice cream cones photo by silviarita on Pixabay

https://pixabay.com/en/ice-cream-ice-cream-flavors-fruits-2202605/


Vertical Shifts

The first transformation we want to look at is adding a constant  to the output
of the function, .

In this figure you can change the value of . The graph of the original function
 is shown in . The transformed function  will be shown in .

How would you describe the relationship between the two graphs?

To use the interactive figure visit https://www.geogebra.org/m/Y5TzgBaP

The result of adding a constant to a function is that the graph moves up or down
 spaces.

More formally, if  is any function and  is any constant, then the graph 
is a vertical shift of the function . The graph of  can be found by
adding  to every y-value of the original graph. We can summarize this by saying

If , then  is found by shifting the graph of  up  spaces.
If , then  is found by shifting the graph of  down 
spaces.

c
f(x)

c
f(x) black f(x) + c red

c

f c f(x) + c
f f(x) + c

c

c > 0 f(x) + c f c
c < 0 f(x) + c f c

QUICK CHECK

1. How is the graph of  different from the graph of

 ?

2. What function would have the same shape as  but shifted 
spaces up?

y = √x + 10
f(x) = √x

f(x) = x2 6

https://www.geogebra.org/m/Y5TzgBaP
https://www.geogebra.org/m/Y5TzgBaP
https://www.geogebra.org/m/Y5TzgBaP


Horizontal Shifts

Another way to transform a function is to add a constant  to the input . Use
the figure to observe what happens to  as the value of  changes.

Pay special attention to the sign of . Which direction is the transformation when
 is positive?

To use the interactive figure visit https://www.geogebra.org/m/YJUZlyHJ

You have just seen that the graph of  is a horizontal shift of the
function . The graph of  can be found by subtracting  from every x-
value of the original graph. In other words,

If , then  is found by shifting  to the left  spaces.
If , then  is found by shifting  to the right  spaces.

Horizontal shifts are somewhat counter intuitive, and you will want to refer back
to this chart often as you work through the exercises.

Vertical and horizontal shifts do not change the shape of the graph, only its
location. Our next few transformations, however, will alter the shape of the
graph.

c x
f(x + c) c

c
c

f(x + c)
f f(x + c) c

c > 0 f(x + c) f c

c < 0 f(x + c) f c

https://www.geogebra.org/m/YJUZlyHJ
https://www.geogebra.org/m/YJUZlyHJ
https://www.geogebra.org/m/YJUZlyHJ


Vertical Stretches

The two previous transformations involved addition and resulted in a shift. Using
the figure below, you can discover the effect of multiplying a function by a
positive constant . As you change the value of  , the graph of  will change
as well. How would you describe this change?

QUICK CHECK

Suppose the function  gives your weekly pay based on the number of
hours worked.

-5 5 10 15 20 25 30 35 40 45

100

200

300

400

Hours Worked

Gross Pay in $
P(h)

1. Describe what the graph of  would look like, and what it
would mean.

2. Describe what the graph of  would look like, and what it
would mean.

3. What function would have the same shape as  but shifted 
spaces horizontally to the left?

P(h)

P(h + 10)

P(h − 10)

f(x) = x2 4

c c cf(x)

https://www.geogebra.org/m/HJhxc4Lx
https://www.geogebra.org/m/HJhxc4Lx
https://www.geogebra.org/m/HJhxc4Lx


To use the interactive figure visit https://www.geogebra.org/m/HJhxc4Lx

Hopefully you noticed that multiplying a function by a constant  stretches the
graph up and down.

In other words, if  is any function and  is any constant, then the graph of 
is a vertical stretch of the original function . The graph of  can be found
by multiplying each y-value of the original graph by .

If , then the graph  is sometimes called a vertical compression of
the graph of . We will use the word stretch for both situations, with the
understanding that the graph is always scaled by a factor of .

Horizontal Stretches

A function can be stretched horizontally by multiplying the input  by some
constant . Use the following interactive figure to observe how the shape of the
graph changes for different values of .

How much wider is the function when  as compared to when ?

To use the interactive figure visit https://www.geogebra.org/m/ZPBnPTlS

This horizontal stretch is one of the most counter-intuitive transformations
you will encounter. You should have seen that the graph got wider when  was
small, and narrower when  was large.

c

f c cf(x)
f cf(x)

c

0 < c < 1 cf(x)
f

c

QUICK CHECK

1. Suppose  is a point on the graph of the function . What does
the transformation  do to that point?

2. Suppose  is a point on the graph of the function . What does
the transformation  do to that point?

3. What function would look like  but stretched vertically by a
factor of ?

(2, 5) f
4f(x)

(3, 8) g
0.5g(x)

f(x) = x2

5

x
c

c

c = 2 c = 0.5

c
c

https://www.geogebra.org/m/HJhxc4Lx
https://www.geogebra.org/m/ZPBnPTlS
https://www.geogebra.org/m/ZPBnPTlS
https://www.geogebra.org/m/ZPBnPTlS


When we encounter a transformation of the form , its graph can be found
by dividing each x-value of the original graph by .

If , then the resulting graph is compressed horizontally.
If , then the resulting graph is stretched horizontally.

In either case, the x-values are always scaled by a factor of .

Vertical and Horizontal Reflections

The last category of transformations we will study are the reflections. The graph
of  is a vertical reflection of the function  across the x-axis. In a
vertical reflection all of the y-coordinates change signs from positive to negative
or vice versa.

f(c x)
c

c > 1
0 < c < 1

1/c

QUICK CHECK

1. Suppose that the graph of the function  below describes the path
of an average drive by PGA professional Stewart Cink using his
current golf club.

Imagine that a new club has been developed that will transform 
into . What would this new club do to the distance of his drive?

2. What function would look like  but horizontally stretched by
a factor of ?

f(x)

f(x)
f(2x)

f(x) = x2

3

−f(x) f



To use the interactive figure visit https://www.geogebra.org/m/ae4EaVFq

The graph of  is a horizontal reflection of  across the y-axis With
horizontal reflections the x-coordinates change signs.

To use the interactive figure visit https://www.geogebra.org/m/xQwb021E

Notice that these transformations follow the pattern of inside/outside changes
we've seen before. Putting the negative sign outside the function causes a
vertical reflection, while a negative inside the function produces a horizontal
reflection.

f(−x) f

https://www.geogebra.org/m/ae4EaVFq
https://www.geogebra.org/m/ae4EaVFq
https://www.geogebra.org/m/ae4EaVFq
https://www.geogebra.org/m/xQwb021E
https://www.geogebra.org/m/xQwb021E
https://www.geogebra.org/m/xQwb021E


Identifying Transformations

The six transformations we have discussed so far are summarized below.

Transformation Description Coordinate
Change

Vertical Shift

Horizontal Shift

Vertical Stretch

Horizontal Stretch

Vertical Reflection

Horizontal
Reflection

Notice that the location of the constant indicates whether the transformation is
vertical or horizontal. Changes outside the function alter the y-coordinate and
result in vertical transformations, while changes inside the function impact the
x-coordinate and cause horizontal transformations.

Furthermore, you can determine if the transformation is a shift or a stretch by
looking at the operation. Shifts are addition, stretches are multiplication.
Horizontal transformations always behave in a counter intuitive way, so you will
want to be extra careful with them.

Symmetry

Combining a horizontal reflection with a vertical reflection creates a reflection
around the origin.

QUICK CHECK

1. Find the equation of a function whose graph looks similar to
, except reflected across the x-axis.

2. Find the equation of a function whose graph looks similar to
, except reflected across the y-axis.

f(x) = √x + 3

f(x) = 1
x−2

f(x) + c (x, y) → (x , y + c)

f(x + c) (x, y) → (x − c , y)

c f(x) (x, y) → (x , c y)

f(c x) (x, y) → ( , y)x
c

−f(x) (x, y) → (x , −y)

f(−x) (x, y) → (−x , y)

QUICK CHECK

What is the difference between ,  and  ?2f(x) f(2x) f(x) + 2



The interactive figure below allows you to compare the horizontal reflection of a
point across the y-axis with a reflection around the origin. Choose the
reflection(s) you want to see and move the blue pont. As you do so, the location
of the points will be traced, creating an image that has symmetry. Experiment
with this for a while before continuing.

To use the interactive figure visit https://www.geogebra.org/m/iHmotfOF

Even and Odd Symmetry

When reflecting a graph, two interesting things happen sometimes. The first is
that a horizontal reflection across the y-axis might produce the same exact
graph as the original function. Symbolically, . When this happens
we say that the function has even symmetry, or is symmetric across the y-axis.
The figure below illustrates the concept.

f(−x) = f(x)

https://www.geogebra.org/m/iHmotfOF
https://www.geogebra.org/m/iHmotfOF
https://www.geogebra.org/m/iHmotfOF


To use the interactive figure visit https://www.geogebra.org/m/mSp9DhKO

The other interesting thing that can happen with reflections is that a horizontal
reflection and a vertical reflection might have the same result, that is

. When this happens the function has odd symmetry and is
symmetric around the origin. Visually, a 180-degree rotation around the origin
produces the same exact image. This is illustrated in the following interactive
figure.

f(−x) = −f(x)

https://www.geogebra.org/m/mSp9DhKO
https://www.geogebra.org/m/mSp9DhKO
https://www.geogebra.org/m/mSp9DhKO


To use the interactive figure visit https://www.geogebra.org/m/DpMbG1ID

https://www.geogebra.org/m/DpMbG1ID
https://www.geogebra.org/m/DpMbG1ID
https://www.geogebra.org/m/DpMbG1ID


QUICK CHECK

Describe the symmetry of the following graphs.

1. 

2. 

3. 

4. 



Verifying Symmetry Algebraically

While visual identification of symmetry is quick and easy, our eyes can
sometimes be deceived. If a function is defined by an equation, then it is best to
verify symmetry algebraically. If a function is even, then we should be able to
demonstrate that the equations for  and  are the same. If has odd
symmetry, then the equations for  and  should be identical.

Consider the graph of , which appears to have odd symmetry.
Checking the equations we find that

while

Since the two equations are not the same,  does not have odd
symmetry.

A second look at the equation explains why this is the case. Notice that
 is nothing more than the cube function shifted  units up.

It's graph

5. 

f(−x) f(x)
f(−x) −f(x)

f(x) = x3 + 0.01

f(−x) = (−x)3 + 0.01 = −x3 + 0.01

−f(x) = −(x3 + 0.01) = −x3 − 0.01

f(x) = x3 + 0.01

f(x) = x3 + 0.01 0.01



does not go through the origin, rather it has a y-intercept at . It is this
small shift that causes the function to loose its odd symmetry.

Let's look at one more example. The graph of  looks like it has
even symmetry.

To check this algebraically, we need to compare the equation for  with the
equation for . If the two match, then it really does have even symmetry.
Otherwise, it does not.

Replacing  with  we find that

which is exactly the same equation as . Since , we can
confidently conclude that  has even symmetry.

Looking Ahead

In future chapters, we will find transformations included in the standard forms
of several function models. Being able to predict the effects of a shift or stretch
will often simplify calculations and may give insight into easier techniques for
solving equations.

Transformations will be helpful when we model data in Chapter 6. If a data set
looks like a line, for example, then we can apply shifts and stretches to the
identity function  until we find a combination that fits the shape of the
data.

(0, 0.01)

f(x) = x2 − 1

f(−x)
f(x)

x −x

f(−x) = (−x)2 − 1 = x2 − 1

f(x) f(−x) = f(x)
f(x) = x2 − 1

f(x) = x



1.5 Inverse Functions

Introduction

Imagine that you flew to Tahiti for a vacation. After spending some time enjoying
the white sandy beaches and crystal clear water, you might want to return
home. To get back home you would need to find a return flight.

In mathematics, a process that brings you back to where you started is called an
inverse.

In this section you will learn to recognize when a function has an inverse and
how to find it.

Inverse Operations

Many real life processes have inverses while others do not. For instance, if you
put on your shoes and socks you can easily take them off, but once you boil an
egg there's no way to make it raw again.

You are, no doubt, already familiar with some inverse operations in
mathematics. Adding and subtracting are inverse operations, for instance. If you
add , and then subtract , you end up right back where you started, having
completed a round trip.

5

add 6

11

subtract 6

Multiplication and division are also inverse operations. As an example,
multiplying by  and dividing by  are inverse operations.

6 6

−3 −3

Bora Bora, Tahiti photo by Julius Silver on Pexels

https://www.pexels.com/photo/cottages-in-the-middle-of-beach-753626/


10

mul�ply by -3

-30

divide by -3

The only exception is . Multiplying by  cannot be undone with division, since
division by  is not well defined.

There are other operations that sometimes have inverses and sometimes do
not. Powers and roots are prime examples. When working with positive
numbers, powers and roots are always inverses. Here are a few powers of  and
the corresponding roots, for instance.

2

square

4

square root

2

cube

8

cube root

2

4th power

16

4th root

It gets more complicated when working with negative numbers, however.
Consider the following powers and roots of .

-5

square

25

square root

5

-5

cube

-125

cube root

-5

4th power

625

4th root

5

This time, taking an even power followed by an even root did not produce a
round trip. This indicates that even powers and roots are not always inverse
operations. Even powers and roots are inverses only when working with non-
negative numbers.

The following table summarizes the basic inverse operations.

0 0
0

2

−5



add a

x x + a

subtract a

mul�ply by b

x bx

divide by b

raise to the nth power

x xn

take the nth root

if n  is even, then 
x  cannot be nega�veb ≠ 0

Inverse Opera�ons

Exclusions none

Definition of an Inverse Function

If a function has an inverse, then the inverse function should return each output
back to its input, just like a return airline flight.

Note that the outputs of the original function become the inputs of the inverse
function. As a consequence, the domain of  is the range of , and the range
of  is the domain of .

This new notation can be a bit confusing. The symbol  is used to indicate the
"inverse of  ". Even though the  looks like an exponent it is not:  does

not mean .

QUICK CHECK

1. What is the inverse of multiplying by ?

2. What is the inverse of a power of ?

−4

3

DEFINITION

The inverse of a function  is a function  with the property that
whenever , it always follows that .

a b
f

f -1

f f−1

f(a) = b f−1(b) = a

f f−1

f f−1

f−1

f −1 f−1

1
f



Identify Invertible Functions

Let's look at two functions defined by diagrams and see if they have inverse
functions.

This first function matches Josie, Ahani, and Mary with their favorite fruit.

Josie
Ahani
Mary

Apple
Orange

Pear

f

Notice that it is easy to match each fruit back to the person who likes it by
reversing the diagram for . This means that  has an inverse function.

The situation is different with the second function which pairs the same people
with their Italian dream car.

Ferrari
Lamborghini

Pagani

g
Josie
Ahani
Mary

Since both Josie and Ahani prefer Ferrari, we are unable to map Ferrari back to a
single person. Thus, according to our definition,  does not have an inverse.

These examples illustrate the general situation. Functions only have inverses if
each output comes from just one input. In other words, different inputs always
generate different outputs. The only way for  is for .
Functions with this property are called one-to-one functions. Only one-to-one
functions have inverses.

QUICK CHECK

1. Suppose the function  has an inverse and that . What do

you know about ?

2. Suppose the domain of  is  and that its range is
. What are the domain and range of ?

f f(3) = 6
f−1(6)

f D = {1, 2, 3, 4}
R = {5, 6, 7, 8} f−1

f f

g

f(x1) = f(x2) x1 = x2



When a function is defined by a diagram, you can determine if it is one-to-one by
inspecting each input-output pair. If two or more different inputs are paired with
the same output, then the function is not one-to-one and does not have an
inverse. This technique can also be used when the function is defined by a table
or a list of points.

The Horizontal Line Test

Since different inputs to a one-to-one function always create different outputs,
no two points on the graph of a one-to-one function can have the same y-
coordinate.

QUICK CHECK

1. Does this diagram represent a function that is one-to-one?

A
B
C

-2
5
18
42

Domain Range

D

2. Does this diagram represent a function that is one-to-one?

Ann
Beth
Chris

Pizza
Taco
Salad
Bagel

Domain Range

3. Is the function in this table one-to-one?

t g(t)
0 13
1 22
2 6
3 6
4 13
5 22

4. Are these ordered pairs a one-to-one function?

f(x) = { (2, 3), (5, 1), (0, −9) }



One-to-one functions

must pass both the vertical

line test (to be a function)

and the horizontal line test

(so that it is one-to-one).

A quick way to test this is to draw (or imagine drawing) several horizontal lines
through the graph. If the function is one-to-one, then no horizontal line will
cross the graph more than once. This test is called the horizontal line test and
works exactly like the vertical line test, except in the horizontal direction. 

In each of the figures below there is a blue horizontal line. Apply the horizontal
line test to each function by moving the horizontal line up and down graph.

5
5

QUICK CHECK

1. Is this function one-to-one?

2. Does this function have an inverse?



Use Tables or Diagrams to Find Inverses

Consider again the function that matched Jill, Alicia and Mary with their favorite
fruit. Since it is a one-to-one function, it must have an inverse function. We can
construct the inverse function  by reversing the diagram for .

Josie
Ahani
Mary

Apple
Orange

Pear

f

Apple
Orange

Pear

f -1
Josie
Ahani
Mary

In general, if a one-to-one function  is defined by a diagram, a table or a list of
ordered pairs, then the inverse function  is formed by reversing all the
ordered pairs.

f−1 f

f

f−1



Graph the Inverse of a Function

This idea of reversing the ordered pairs to find the inverse can be used to graph
inverse functions, even if we don't know their equations. We can do this by
identifying a point  on the graph of  and reversing the coordinates. The

new point  will be on the graph of .

Use the interactive figure below to explore this relationship. As you move the
blue point  on  the inverse point  on  will be plotted.

QUICK CHECK

Find of the inverses of following one-to-one functions.

1. Find the inverse of the one-to-one function given in this diagram.

A
B
C

-2
5
18
42D

f

2. Find the inverse of the function in given by this table.

t g(t)
0 -3
1 -2
2 1
3 6
4 13
5 22

3. Find the inverse of the function below.

f(x) = { (2, 3), (5, 1), (0, −9) }

(x, y) f

(y,x) f−1

(x, y) f (y,x) f−1



To use the interactive figure visit https://www.geogebra.org/m/ahZnh6T9

As you might have noticed, reversing the ordered pairs has the same effect as
reflecting the graph across the line . In fact, a quick way to graph an
inverse by hand is to locate a few points on the graph of  and reflect them.

Inverses of Basic Functions

When a function is defined by a single operation, finding the inverse is as simple
as finding the inverse operation, if it exists. This is the case with several of our
six basic functions.

Cube & Cube Root

For instance, since the cube and cube root are opposite operations, the cube
and cube root functions are inverses of each other.

y = x
f

https://www.geogebra.org/m/ahZnh6T9
https://www.geogebra.org/m/ahZnh6T9
https://www.geogebra.org/m/ahZnh6T9


-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

Cube Func�on

f (x) =x 3

-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

Cube Root Func�on

f (x) = x3

Notice that both functions pass the horizontal line test.

Square & Square Root

The square function, on the other hand, does not pass the horizontal line test,
so it cannot have an inverse.



-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

f (x )=x 2

Square Func�on

At the same time, it certainly would be useful to think of the square and square
root functions as inverses. Perhaps there is a way to work around this?

The solution is to remember that the square and square root are inverse
operations only when working with non-negative numbers. If we restrict the
domain and only work with  when , then we will have a pair of
inverse functions.

f(x) = x2 x ≥ 0



-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

f (x )=x 2 ,  x>0

Square Func�on
(domain restricted)

-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

Square Root Func�on

f (x) = x

QUICK CHECK

1. What is the inverse of the identity function ?

-4 -3 -2 -1 1 2 3 4

4

3

2

1

-1

-2

-3

-4

f (x )=x

Iden�ty Func�on

f(x) = x



The U.S. Postal Service

honored Fred Rogers

(1928–2003) with a Forever

stamp on the 50th

anniversary of Mister

Rogers' Neighborhood in

March, 2018.

Use the Shoes and Socks Method to Find Inverses

You have learned that if a one-to-one function is defined by a diagram, table, or
graph, then its inverse can be found by reversing the ordered pairs. If the
function is defined by a single operation, then the inverse is the function that
performs the opposite operation.

When functions include several operations there are two methods for finding
the inverse, if it exists. In Chapter 4 you will learn a switch and solve method
based on the idea of reversing the ordered pairs of a function.

Right now, however, the focus is on a simpler socks and shoes method. This
method gets its name from the obvious place. When getting dressed you put on
your socks before putting on your shoes. To take them off you must reverse the
order: first remove your shoes and then take off your socks.

A great illustration of this method comes from the classic television program Mr.
Rogers' Neighborhood. At the start of each episode, the late Fred Rogers would
walk in singing the song "Won't You Be My Neighbor?" As he sang he would

1. Take off his jacket

2. Put on a sweater

3. Take off his shoes

4. Put on sneakers

At the end of each episode he would invert the process and

1. Take off the sneakers

2. Put on his shoes

3. Take off the sweater

4. Put on his jacket

Notice that the two lists contain the inverse actions in the reverse order. That is
the key! If we can identify the order in which a function performs its operations,
we should be able to construct its inverse by doing the inverse operations in the
reverse order.

2. What is the inverse of the reciprocal function ?

Reciprocal Func�on

1 2 3 4

4

3

2

1

-3 -2 -1
-1

-2

-3

-4

-4

f (x) = x
1

f(x) = 1
x

http://localhost:1313/chapter-4/4.4#learn-the-switch-and-solve-method


As an example, consider the function . Following the standard
order of operations, this function first multiplies each input by  and then
subtracts .

The inverse function must do the inverse operations in the reverse order: add 
and then divide by .

Now that we have identified the operations that the inverse should do, we
construct the equation for  by applying each of those operations, in the
order listed, to a variable. The steps are as follows:

1. Start with a variable

2. Add 

3. Divide by 

4. Write as a function

We should also check that  and  have the round trip property we have seen
earlier. To do this pick any random number, see where  takes that number, and
then check to see if  will bring it back. For instance, if  then 

and 

7 21

mul�ply by 3

divide by 3

19

subtract 2

add 2

f -1(x) = x + 2
3

f (x) = 3x -2  

so the round trip property appears to hold. It would be good to test this with a
few more random values just to make sure. In Chapter 4 we will discuss a way to
formally verify that it works for any number.

Now let's use the shoes-and-socks method to find the inverse of 
. We begin by identifying the operations performed by the function, and then
invert the list to find the operations of the inverse function.

f(x) = 3x − 2
3

2

2
3

f−1

x

2
x + 2

3
x + 2

3

f−1(x) =
x + 2

3

f f−1

f

f−1 x = 7 f(7) = 19
f−1(19) = 7

QUICK CHECK

Find the inverse of the function .f(x) = x+1
4

f(x) = 2x3 + 4

http://localhost:1313/chapter-4/4.4#verify-inverse-functions


Operations
Performed by the

Function

Operations
Performed by the

Inverse

1. Cube 1. Subtract 

2. Multiply by 2. Divide by 

3. Add 3. Cube root

Now that we know what the inverse function does, we construct its equation as
follows:

Start with a variable:

Subtract :

Divide by :

Cube root:

Write as a function:

It's also a good idea to check the round trip property with at least one value, let's
see what happens when .

2

cube

8

cube root

16

mul�ply by 2

divide by 2

20

add 4

subtract 4

f -1(x) = x - 4
2

3

f (x) = 2x 3 +4  

Let's look at one last example of the shoes-socks method and find the inverse of
. We'll list the operations performed by the function and then

list what the inverse function should do, just as we have done earlier.

4

2 2

4

x

4
x − 4

2
x − 4

2

3√ x − 4
2

f−1(x) = 3√ x − 4
2

x = 2

QUICK CHECK

Find the inverse of the function .f(x) = 5√6x + 1

f(x) = (x + 1)2



Operations
Performed by the

Function

Operations
Performed by the

Inverse

1. Add 1. Square root

2. Square 2. Subtract 

Then we write the equation for .

Start with a variable:

Apply square root:

Subtract :

Write as a function:

But when we check the round trip property we see that some values, such as
, don't work.

-5 -4

add 1

subtract 1

16

square

square root

f (x) = (x+1) 2  

f -1(x) = - 1x

4 3

This is because we have made a critical oversight. A graph of 
shows that it is not a one-to-one function, so it cannot have an inverse unless we
restrict the domain. To do this we require the input of the square to be
greater than or equal to zero. In this case, we need , which is the same
thing as saying . Only when we restrict domain of  to

 will the two functions will be inverses. We will have to keep an eye out
for this any time a function, or its potential inverse, includes an even power.

Interpreting Inverse Functions

Earlier in this section we found that the domain and range of  become the
range and domain, respectively, of the inverse function . Not only do the
domain and range trade places, but their units of measure do as well. Keeping
track of those units makes it much easier to understand the significance of an
inverse function.

For instance, the amount of time  that it takes you to drive to work in minutes
is a function of how fast you drive in miles per hour. In theory, if you know your
average speed , then you can predict how long the trip will take.

1

1

f−1

x

√x

1
√x − 1

f−1(x) = √x − 1

x = −5

f(x) = (x + 1)2

x + 1 ≥ 0
x ≥ −1 f(x) = (x + 1)2

x ≥ −1

f

f−1

T

S

http://localhost:1313/img/chapter-1/graph_(x+1)2.png


The inverse function, if it exists, would turn speed into a function that depends
on the time. With the inverse function, knowing the duration of the trip allows
you to calculate the average speed. Symbolically, if , then .

With this understanding, the distinction between  and  is much
more clear. In this example,  would be the time it takes to drive to work if

the average speed is  mph. On the other hand,  would be the speed
required so that the trip takes  minutes.

Looking Ahead

In this section we have seen how to identify when a function has an inverse and
discussed techniques for finding and interpreting the inverse. We have also
hinted at the fact that an equation only has a unique solution if the underlying
function is one-to-one.

In the following chapters, every time we learn about a new function we will also
check to see if it is one-to-one or not. If it is, then we will also look for its inverse.
If not, then we will consider restricting its domain and focusing on a smaller
piece of the function that does have an inverse.

T = f(S) S = f−1(T )

f(45) f−1(45)
f(45)

45 f−1(45)
45

QUICK CHECK

The temperature of a potato depends on how long it has been in the
oven. In other words, the temperature in degrees Fahrenheit is a function
of time in minutes.

1. Explain the significance of the inverse function in this instance.

2. Describe the difference in meaning between  and  in
this example.

f(60) f−1(60)



1.6 Measuring How Functions Change

Introduction

When the stock market opened on Monday, October 22, 2001, stock in Enron (a
large Fortune-500 energy company) was trading for about $20 per share.

At the same time stock in Apple (the electronics manufacturer) could be also be
purchased for $20.

Without additional information, it would be natural to assume that state of both
companies was the same. In reality, however, they were headed in opposite
directions.

Later that day, the SEC announced they were investigating Enron for accounting
irregularities. Within weeks the company declared bankruptcy and several Enron
executives were sent to prison for fraud and conspiracy.

Apple, on the other hand, had an important announcement of their own. The
next day, on October 23, 2001, Apple CEO Steve Jobs unveiled the very first iPod.
It was an iconic success that revolutionized the consumer electronics industry
and helped establish Apple as one of the most innovative technology companies
in the world.

As we've seen earlier, functions, just like stocks, can increase and decrease in
value. Our goal in this section is to develop tools that allow us to measure,
compare and categorize functions based on how they change.

Intervals

In section 1.3 we saw how to visually identify regions where a function is
increasing, decreasing or constant. We also saw portions of graphs that were
concave up or concave down.

iPod photo by mikefoster on Pixabay

http://localhost:1313/1.3
https://pixabay.com/photo-1428164/


Generally a function is

not increasing, decreasing

or constant at the

endpoints of an interval so

we usually write those

intervals with parenthesis

, and not brackets 

unless circumstances

dictate otherwise.

Since functions can behave differently on different subsets of their domain, we
will need to describe the specific intervals we are inspecting.

For instance, on this graph

a b c d e

   
   

   
in

cr
ea

sin
g

   
   

    
    

    
    

     
      

        
     constant

   
   

    
    

    
    

     
      

        
                              decreasing

    
    

    
    

    
     

     
       

         
                                                                     i n

cre
as

in
g

the function is increasing on the interval , constant on , decreasing
over the interval  and increasing again on . 

Take special note that these intervals are only on the x-axis. That is because they
are parts of the domain of the function. We will use y-values in a moment to
measure how much the function has increased or decreased.

In addition to identifying a specific interval, we might also need to measure how
long it is. The length of an interval from  to  is given by

The upper-case Greek leter delta ( ) is used throughout math and science to
indicate change. If we mention the "change in the x-values" then that is the same
as  which is also the same thing as the length of the interval .

(a, b) (b, c)
(c, d) (d, e) 6

6

( ) [ ]

a b

Δx = b − a

Δ

Δx [a, b]

QUICK CHECK

1. Determine the specific intervals where this graph is increasing,
decreasing and/or constant.

2. What is the length of the interval ?

3. What is the change in the x-values from  to ?

[−2, 5]

x = 4 x = 10

http://localhost:1313/1.1#intervals-of-real-numbers


Total Change

The amount that a function has increased or decreased on an interval is called
the total change of the function. The symbol  means the change in the y-
values and will be used to represent total change.

To calculate the total change of a function on some interval  we find the
difference between the starting value  and the ending value .

Notice that the total change does not care about what happens in the middle of
the interval, it only uses the values of the function at the ends of the interval.

Both  and  are illustrated in the diagram below.

a b

f (a)

f (b)

Δ x

Δ y

Δy

[a, b]
f(a) f(b)

Δy = f(b) − f(a)

Δy Δx

QUICK CHECK

Use the graph of  to answer the questions below.

–1 1 2 3 4 5 6

–4

–2

2

4

0

1. Find  on the interval .

2. Calculate  on the interval .

f(x)

Δy [−1, 3]

Δy [3, 6]



Percent Change

If you won a million dollars you might feel like that's a really big change. But if
someone told you the government was going to increase national spending on
education by a million dollars you'd probably feel like that is a very small change,
even though the amount is exactly the same. That is one of the limitations of
total change; it doesn't relate the change to the starting value. To do that we
need a percent change formula.

The percent change of a function  over an interval  is the ratio of the
total change to the starting value. We calculate percent change as follows:

With this formula the percent change is given in decimal form. In other words, a
value such as  should be interpreted as . Also note that the percent
change cannot be computed if .

Average Rate of Change

While percent change helps you see the relative increase or decrease in values,
it does not indicate how quickly the change is happening. To see how rapidly
function values change we need to average the total change across the length of
the interval.

You are probably already familiar with the basic process of finding averages. For
instance, if you drove a distance of 100 miles in 2 hours then your average speed
would be .

Your actual speed may have gone up and down during the trip but, on average,
your speed was 50 miles per hour.

To find the average change of a function we follow the same process and divide
the total change of the function  by the corresponding change  in the

input values to get .

f [a, b]

percent change =
f(b) − f(a)

f(a)

0.12 12%
f(a) = 0

QUICK CHECK

1. Suppose the number of scholarships given by a university increased
from 125 to 180. What is the percent change?

2. The cost per person of sharing a $30 pizza between  people is given
by the function . Find the percent change between sharing
it with 3 people instead of 2.

x
f(x) = 30

x

= 50 miles per hour100 miles
2 hours

Δy Δx
Δy

Δx



Since  is a ratio, it is often called the average rate of change of a function.

The resulting quantities describe per unit changes. That is to say, by averaging
we can tell what will happen to  every time  increases by .

To see how this works let's find the average rate of change of  on the
interval . Using the formula above we see that

This means that from  to  the function  increases, on
average, by  units every time  increases by  unit.

It's important to point out that unless the function is linear, the average rate of
change of a function will be different over different intervals. The value we get
depends on the specific interval  chosen.

The average rate of change formula might look familiar. That's because it is the
same thing as the slope of the line connecting the points  and .
This line is called a secant line.

a b

f (a)

f (b)

Δ x

Δ y
secant

When a function is defined by a graph, the average rate of change can always be
found by calculating the slope of the secant line.

=
Δy

Δx

f(b) − f(a)

b − a

Δy

Δx

f(x) x 1

f(x) = √x

[9, 100]

=

=

=

≈ 0.077

Δy

Δx

√100 − √9

100 − 9
10 − 3

91
7

91

x = 9 x = 100 f(x) = √x

0.077 x 1

[a, b]

QUICK CHECK

Calculate the average rate of change of  over the interval
.

f(x) = √x

[0, 16]

(a, f(a)) (b, f(b))



Concavity and Rates that Change

We've seen before that functions can curve up or curve down allowing the
function to change a different speeds. In other words, concavity is an indication
that the rates of change themselves can change.

For instance, an increasing function could grow at a steady rate, at a rate that
quickens, or at a rate that slows. All three options are shown below.

Increasing at an
increasing rate

Increasing at a
decreasing rate

Increasing at a
constant rate

Functions can also decrease at constant, increasing, and decreasing rates.

QUICK CHECK

–1 1 2 3 4 5 6

–4

–2

2

4

0

1. Use the graph above to find  on the interval .

2. From the graph, what is  on the interval ?

Δy

Δx
[−1, 1]

Δy

Δx
[1, 6]

http://localhost:1313/1.3#concavity


Decreasing at an
increasing rate

Decreasing at a
decreasing rate

Decreasing at a
constant rate

While working with these changes in the rate is a topic best studied in calculus,
it's not too difficult to recognize situations where rates change.

Difference Quotients

The formulas we have used so far show what happens on a specific interval.
We'll now build a mechanism that has the potential to describe the behavior of a
function on every interval all at once.

The tool that does this is called the difference quotient. The difference
quotient  is a function that lets us calculate the average rate of change on a
generic interval from  to , where  is any positive number. This is the
same thing as the average rate of change, but with a change in notation.

QUICK CHECK

For each of the scenarios below, decide if the rates of change would be
increasing, decreasing or constant.

1. The temperature of a turkey as it roasts in an oven.

2. The world record in the 100 meter dash.

3. The altitude of a space ship as it is launched from Earth.

4. The height of a ball dropped off a cliff.

D(x)
x x + h h



Difference Quotient

x x+h

f (x)

f (x+h)

f (x+h) - f (x)
h

D(x) =

h

To see how the difference quotient is derived from the average rate of change
formula, we substitute  in place of , and  in place of  and simplify.

The behavior of  is connected to how the function  changes in two
important ways. First, whether the function is strictly increasing, decreasing or
constant on an interval impacts the sign of .

If  is increasing on an interval, then the difference quotient is
positive on that same interval.
If  is decreasing on an interval, then the difference quotient will be
negative on that interval.
If  is constant over an interval, then the difference quotient is 
over that interval.

Secondly, the concavity of the function tells us if  itself is increasing,
decreasing or constant. That is to say,

If  is concave up on an interval, then  increases over that
interval.
If  is concave down on an interval, then  decreases on that
interval.
On any interval where  is a straight line,  will be constant.

Let's examine a few simple examples. The function  is an
increasing linear function, so we expect the difference quotient to be a positive
constant value, and it is.

x a x + h b

=

=

f(b) − f(a)

b − a

f(x + h) − f(x)

(x + h) − x

f(x + h) − f(x)

h

D(x) f(x)

D(x)

f(x)

f(x)

f(x) 0

D(x)

f(x) D(x)

f(x) D(x)

f(x) D(x)

f(x) = 3x + 2



D(x)
f (x + h) - f (x)

h=

3(x + h) + 2 - (3x+2)
h=

3x + 3h  + 2 -3x - 2
h=

3h
h=

3=

Substitute f (x)=3x+2  and  f (x+h) = 3(x+h)+2.

Distribute 3(x+h)+2= 3x + 3h +2, and -(3x+2) = -3x-2.

Cancel common factor.

Simplify like terms.

It is interesting to note that the value of the difference quotient is exactly the
same as the value of the slope of the line.

For our final example, we'll look at the square function . We know that
this function is concave up over its entire domain of all real numbers, so we
expcect its difference quotient will always be increasing.

D(x)
f (x + h) - f (x)

h=

 

(x + h)2 - (x)2

h=

x2  + 2hx + h2- x2

h=

2hx + h2

h=

2x + h=

 Substitute f (x+h) = (x+h)2 and  f (x )=x 2 . 

Expand (x+h)2= x2 + 2xh + h2.

Simplify.

Cancel x 2 and  -x 2 .

Notice that no matter what value  happens to be,  is always increasing
since it is a linear function with a slope of .

Looking Ahead

Exploring how functions change is a fascinating topic and is foundational to
calculus. Not only will calculus teach you more about efficiently computing
average rates of change, you will also learn to use the difference quotient to
calculate instantaneous rates change, leading to the concept of a derivative.

But for now, it is enough to know that functions with similar behaviors have
similar difference quotients, allowing us to group them together into different
families that we will encounter in the next chapters.

f(x) = x2

h D(x)
2



2.1 Power Functions

Introduction

Part of the enjoyment of art comes from its patterns of sound and color and
motion.

Patterns are also an essential part of mathematics. The British mathematician G.
H. Hardy once said that "A mathematician, like a painter or a poet, is a maker of
patterns. If his patterns are more permanent than theirs, it is because they are
made with ideas".

In this section, we will find an underlying structure that unifies the six basic
functions from Chapter 1 and opens up a new category of functions for our use.

Power Functions

When working with a group of functions, the first pattern we look for is any
similarity in the form, or equation, of the functions. Once we have identified a
pattern, we can create new functions by changing the parameters of that basic
equation.

For instance, these three functions

are all written in the form , where  is the power of the variable .
New functions can be made by taking that basic format and changing the power

. Since the power is the important parameter of the equation, we will call these
power functions.

identity function f(x) = x = x1

square function f(x) = x2

cube function f(x) = x3

f(x) = xp p x

p

Photo by Daian Gan from Pexels

http://localhost:1313/chapter-1/1.3#graphs-of-basic-functions
http://localhost:1313/chapter-1/1.3#graphs-of-basic-functions
https://www.pexels.com/photo/brush-painting-color-paint-102127/


In general, a power function is any function that can be written as ,
where  is a constant. Notice that the variable must be raised to a fixed power.
That power can be positive or negative, a whole number, a fraction or a decimal,
but it cannot be a variable. As an example,  has a variable exponent,
so it cannot be a power function even though it looks somewhat similar.

Use Rules of Exponents to Identify Power Functions

We now know that the identity, square and cube are all power functions, but
what about the other basic functions from Chapter 1? At first glance, these
functions

do not appear to be power functions since they are not written in the form
.

However, any function that can be written as  is a power function,
even if it is often written in a different format. A brief review of a few rules of
exponents will show that these three functions are indeed power functions.

Negative Powers

You might recall the rule . This tells us that the reciprocal function

 is the same as the power function . The general rule of
exponents at work here is

This rule can be used to convert any reciprocal-type function into a power
function. For instance,  can be rewritten in the standard power

function format as .

f(x) = xp

p

g(x) = 3x

QUICK CHECK

Decide if the following are power functions or not. If it is, identify the
value of the power .

1. 

2. 

3. 

p

f(x) = x−2

f(x) = 2x

f(x) = x1.68

reciprocal function f(x) =

square root function f(x) = √x

cube root function f(x) = 3√x

1

x

f(x) = xp

f(x) = xp

= x−11
x

f(x) = 1
x

f(x) = x−1

= x−n1

xn

f(x) = 1
x5

f(x) = x−5



Roots

Another rule of exponents allows us to rewrite roots as fractional powers.
Specifically,

From this we see that the square root function  and the cube root

function  can be written as power functions where the powers are
 and , respectively.

and

Other roots can be rewritten as power functions in the same way. For instance,
.

Fractional Powers

The family of power functions also includes roots of powers, such as
 , or powers of roots like , which happen to be the

same thing. These can be rewritten as power functions where the power is a
rational number, or faction, of the form , such as  or .

QUICK CHECK

Rewrite the following functions in the standard power function form.

1. 

2. 

f(x) = 1

x2

f(x) = 1

x4.11

m√x = x1/m

f(x) = √x

f(x) = 3√x

1/2 1/3

f(x) = √x = x1/2

f(x) = 3√x = x1/3

f(x) = 8√x = x1/8

QUICK CHECK

Rewrite the following functions in the standard power function form.

1. 

2. 

f(x) = 5√x

f(x) = 4√x

f(x) = m√xn f(x) = (m√x)n

p = n/m −3/8 2/5

m√xn = (m√x)n = xn/m



Since all three forms are equivalent, you may be asked to convert one into the
others. The power function , for instance, can also be written as

 or as .

Evaluating Power functions

When using a calculator to evaluate and graph power functions we need to be
careful to wrap  and/or  in parenthesis anytime either one is anything other
than a whole number. For example, if  then to evaluate 
parenthesis should be put around both  and around the power .
Without parenthesis, the normal order of operations would give a very different
answer.

Correct evaluation of Incorrect evaluation of

(-3/8)^(2/5) =

0.675480019

-3/8^2/5 = -0.009375

We should also keep in mind that many power functions are not defined when
, and that if the power is negative then  is not in the domain. Expressions

involving either of these will produce an error message on your calculator.

f(x) = x2/5

f(x) = 5√x2 f(x) = ( 5√x)2

QUICK CHECK

Rewrite the following functions in the other two formats.

1. 

2. 

3. 

f(x) = √x3

f(x) = ( 4√x)7

f(x) = x2/9

x p

f(x) = x2/5 f(−3/8)
−3/8 2/5

(−3/8)2/5 (−3/8)2/5

x < 0 0

QUICK CHECK

Use a calculator to find the following values of the function .

1. 

2. 

3. 

f(x) = x−1/2

f(4)

f(−6.1)

f(0)



Graphs of Power Functions

While technology can be used to graph power functions, you can often create a
"good enough" sketch within seconds just by examining the equation. The shape
of the graph of a power function  is controlled by the value of the
power . In this interactive figure you can use the blue slider to change .

Since many powers are undefined when , we will focus on the first
quadrant for now. As you change , look for patterns or similarities between the
different graphs. In particular, try to group the graphs into three distinct shapes.

To use the interactive figure visit https://www.geogebra.org/m/FyjpfmvA

As you may have noticed, all power functions pass through the point ,
though they do so in three different ways depending on the power . The three
behavior patterns are separated from one another by  (when we get the
horizontal line ) and  (when we get the identity function ).

1

1

 p<0

 0<p<1

 p>1

In Chapter 1 you learned how to identify several characteristics of a function by
reading its graph. Since understanding the properties of these three shapes will
impact your ability to use power functions effectively, our next goal is to analyze
each of these shapes individually.

Case 1: 

Let's start with the case where the power is negative, that is . Notice that
this graph resembles the right side of the reciprocal function.

f(x) = xp

p p

x < 0
p

(1,  1)
p

p = 0
y = 1 p = 1 y = x

p < 0
p < 0

https://www.geogebra.org/m/FyjpfmvA
https://www.geogebra.org/m/FyjpfmvA
https://www.geogebra.org/m/FyjpfmvA
http://chapter-1/1.3#the-reciprocal-function


1

1

 p<0

Looking at the graph we see that it drops sharply along the y-axis and levels off
toward the positive x-axis, as you move from left to right. In mathematical terms,
the graph is both decreasing and concave up on the interval , with a
vertical asymptote at  (the y-axis) and a horizontal asymptote at  (the
x-axis).

Because of the asymptotes, the graph never reaches a minimum nor a maximum
value. Based on the shape of the graph, it would be reasonable to use this type
of power function to represent quantities that decay as  increases.

Case 2: 

If the power is small, that is , then the graph of the power function
 is increasing and concave down over the interval . Note that

this shape resembles the square root function.

1

1

 0<p<1

The graph has a minimum value at , but does not have a maximum or any
asymptotes. Since the graph is concave down, the rate of increase is decreasing,
suggesting that this type of power function might model quantities whose
growth is slowing down.

Case 3: 

When , the power function  increases and is concave up on the
interval . This graph resembles the right side of the square function.

(0, ∞)
x = 0 y = 0

x

0 < p < 1
0 < p < 1

f(x) = xp (0, ∞)

(0, 0)

p > 1
p > 1 f(x) = xp

(0, ∞)

http://chapter-1/1.3#the-square-root-function
http://chapter-1/1.3#the-square-function


1

1

 p>1

There is a minimum value at the origin , but no maximums or asymptotes.
These functions will be useful when modeling quantities that grow faster and
faster. Lastly, note that this graph, along with the two previous ones, is one-to-
one and must have an inverse.

Symmetry of Power Functions

So far, we have restricted our attention to power functions with  because
many powers are not defined when .

In particular, if the power is a rational number, or fraction, of the form 
(and the power has been reduced) then the function is not defined when .
The reason for this is that fractional powers with even denominators are even
roots, and even roots of negatives are not real numbers.

However, if the denominator  is odd then the function is defined for negative
values of . You can explore this in the interactive figure below.

To use the interactive figure visit https://www.geogebra.org/m/lUgvcybm

Notice for an odd denominator , the function exhibits even symmetry when
the numerator  is even and odd symmetry when the numerator  is odd.

So a quick look at the power helps us know where the function is defined and
what type of symmetry it has.

(0, 0)

x ≥ 0
x < 0

p = n/m
x < 0

m
x

m
n n

https://www.geogebra.org/m/lUgvcybm
https://www.geogebra.org/m/lUgvcybm
https://www.geogebra.org/m/lUgvcybm


Use Symmetry to Graph Power Functions

Knowing how the values of  and  impact the symmetry of  with
 also allows us to quickly sketch the graph of a power function.

Consider, for instance, . The power  is between  and , so
the graph of this function looks similar to the basic shape for , which
resembles the square root function. The denominator  is an odd number, which
tells us that this function has a left side. And since the numerator  is even, we
should reflect the right side across the y-axis to create a graph with even
symmetry. Thus, the graph of  looks something like this:

1

1

 f ( x )=x 2 / 3

If the numerator had been odd, such as  then we would have
reflected around the origin instead, ending up with this rough sketch:

QUICK CHECK

Which of the following are defined when ?

1. 

2. 

3. 

Describe the symmetry, if any, of each function without referring to a
graph.

1. 

2. 

3. 

x < 0

f(x) = x7/5

f(x) = x−3/2

f(x) = x8/4

f(x) = x5/3

f(x) = x−6/5

f(x) = x3/4

n m f(x) = xp

p = n/m

f(x) = x2/3 p = 2/3 0 1
0 < p < 1

3
2

f(x) = x2/3

f(x) = x5/3



1

1

 f ( x )=x 5 / 3

Notice that the shape of the right side of  is similar to the right side
of the square function, since .

In summary, to sketch the graph of a power function with a rational exponent,
first choose the basic shape that matches the power .

1

a

 p<0

1

a

 0<p<1

1

a

 p>1

Then use the symmetry rules to draw the other half of the graph, if it exists.

If the denominator  is odd, then the function also exists when 
so it has a left side.
When  is odd, the function has even symmetry if  is even and odd
symmetry if  is odd.

Inverses of Power Functions

Finding the inverse of a power function is a very straightforward process. As an
illustration, consider the cube function  and its inverse, the cube root
function .

Since the cube root can be written as the one-third power , the inverse of
 is the power function .

f(x) = x5/3

5/3 > 1

p

m x < 0

m n
n

QUICK CHECK

1. Make rough sketch of the function .

2. Make a sketch of the function .

3. Draw a graph of the function .

f(x) = x8/3

f(x) = x−3/5

f(x) = x−2/7

f(x) = x3

f−1(x) = 3√x

x1/3

f(x) = x3 f−1(x) = x1/3



Notice that the two powers are reciprocals of each other, that is the key.

In general, the inverse of any power function is the power function whose power
is the reciprocal of the other.

That is to say, given some power function , then its inverse is always
, assuming .

Of course, if the function is not one-to-one (like in the case of ), then
we should restrict ourselves to a portion of the domain (usually ) where
the function is one-to-one.

How Power Functions Change

Our last task for this section is to see if we can find any patterns in the way
power functions change.

You will recall that the difference quotient  is a function that lets us
calculate the average rate of change on a generic interval , where  is
any positive number. The difference quotient of a function is given by

Below are the difference quotients for the power functions  and
.

f(x) = xp

f−1(x) = x1/p p ≠ 0

f(x) = x2

x ≥ 0

QUICK CHECK

Find the inverse of the following power functions.

1. 

2. 

3. 

4. 

f(x) = x5

f(x) = x7/4

f(x) = x−3/5

f(x) = x2.3

D(x)
[x,x + h] h

D(x) =
f(x + h) − f(x)

h

f(x) = x2

f(x) = x3



Function Difference quotient Power function
similar to 

(see steps)

(see steps)

Click the link under each difference quotient to see the steps required to arrive
at the equation.

Notice that the difference quotient of each power function is similar to the next
smaller power function. In general, the difference quotient of  will
involve the power function  for any . This is a fact that is
verified in the first term of calculus.

Looking Ahead

In this section we discovered that the basic library functions could all be written
in an identical algebraic form. We then used that common form to create a new
category of functions, whose properties we explored. This is a process that will
be repeated in later chapters as well. We'll start with functions we understand
and then create new functions that have slightly different algebraic forms and
investigate their properties.

An understanding of the properties and behaviors of functions is essential when
working with applications, which is where we will head next.

D(x) D(x)

x2 2x + h x
1

x3 3x
2 + 3xh + h2

x
2

f(x) = xp

f(x) = xp−1 p ≠ 0

http://localhost:1313/img/chapter-1/difference_quotient_x_squared.svg
http://localhost:1313/img/chapter-1/difference_quotient_x_cubed.svg


A rare first edition copy of

Principia sold at auction

for $3.7 million in 2016.

2.2 Applications of Power Functions

Introduction

In 1687 Isaac Newton published Principia, one of the most important books in
the history of science. In Principia Newton formulated his three laws of
motion, expanded Kepler's work on planetary orbits, laid the foundations for
classical mechanics and, for the first time ever, gave a mathematical description
of gravity.

Newton wrote that the gravitational force between two objects is "proportional
to the product of their masses and inversely proportional to the square of the
distance between them".

In this section we'll spend time trying to figure out what Newton meant by that
and uncover a few other applications of power functions along the way.

The Standard Power Function Model

Most power functions applications require us to scale the basic form 
by a factor of . The resulting equation

is called the standard power function model.

To understand how  impacts the model let's focus on the effect it has on a
single point.

7
7

f(x) = xp

k

f(x) = kxp

k

Apollo 15

https://spaceflight.nasa.gov/gallery/images/apollo/apollo15/html/as15-88-11866.html


To use the interactive figure visit https://www.geogebra.org/m/enm1qAJj

This causes a vertical scaling of the graph by a factor of , so that any power
functions of the form  will pass through the point .

In many cases the scaling factor  is composed of more than one constant. For
instance, the volume of a sphere is a function of the of the radius and is given by

. Here the constant  includes both the fraction  and , that is

.

Applications of Power Functions

Frequently we will find that the only difference between applications is the value
of the scaling constant  and, of course, the context. The next three examples
illustrate this fact. All three are completely different applications, yet each one is
modeled by  for differing values of .

The goal here is not to master the applications, but simply to become familiar
with the terminology and maybe even begin to appreciate the usefulness of
power functions. All you will be asked to do at this point is evaluate the
functions.

k
f(x) = kxp (1, k)

k

V = πr34
3 k 4

3 π

k = π4
3

QUICK CHECK

Identify the scaling factor  for each of the power functions listed below.

1. 

2. 

3. 

k

f(x) = 52(10)6x−2

f(x) = x0.841
√2π

f(x) = x1/2

364

k

f(x) = kx1/2 a

https://www.geogebra.org/m/enm1qAJj
https://www.geogebra.org/m/enm1qAJj
https://www.geogebra.org/m/enm1qAJj
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Photo by Capri23auto from
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Tugboats

Light, fast boats are often designed to skim, or plane, across the surface of the
water. However, when a large, heavy boat moves it must push the water out of
its way. This creates a wave at the bow (front) of the boat. As it tries to go faster
and faster the wave gets bigger and bigger. 

When the length of this wave matches the length of the boat, then the boat has
reached its hull speed , which is generally considered to be the fastest it can
go. The hull speed of a large ship doesn't depend at all on the size of its motor(s)
or how heavy it is. Hull speed is only a function of the ship's length and is given
by

where  is the hull speed in knots and  is the length of the boat at the water
line in feet.

One surprising aspect of this model is that it not only works for large boats, but
for waterfowl like ducks and geese since they make bow waves too. If a duck
has length of 1.25 feet at the water line, Then its predicted top speed swimming
is

Pendulums

A pendulum is a object that swings from a fixed point. A playground swing and a
grandfather clock are two examples of pendulums. In one tower of the Oregon
Convention Center, the 900 pound Principia pendulum hangs from a 70 foot long
cable as it swings. 

8
8

V

V = 1.34L1/2

V L

9
9

V = 1.34(1.25)1/2 ≈ 2knots

QUICK CHECK

The Crowley Marine Invader class tugboat Hunter has won the Seattle
Maritime Festival's tugboat race every year that it has competed since
1995. If the Hunter is 136 feet long at the water line, what is its hull
speed?

1 0
10

Photo by James Abbot on Flickr

https://www.youtube.com/watch?v=1Tj4xvAp_8I
https://pixabay.com/images/id-3820927/
https://pixabay.com/images/id-3820927/
https://flic.kr/p/b1dytH
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Surprisingly, the amount of time that it takes a pendulum to swing back and
forth once (called its period) doesn't depend at all on how heavy it is. The period
of a pendulum depends only on the length of the cable and is given by

where  is the period in seconds and  is the length of the pendulum in feet.

Pendulums in grandfather clocks are often 39 inches long. Since 39 inches is
3.25 feet, this gives them a period of

If the entire period is 2 seconds, then each swing to the left or to the right lasts
almost exactly 1 second, just what a clockmaker would want.

Falling Bodies

Italian scientist Galileo Galilei is reported to have dropped two spheres of
different masses from the top of the Leaning Tower of Pisa and observed that
both hit the ground at the same time. He concluded that the time it takes an
object to fall is independent of its mass. In other words, if air resistance is
removed, a light object, like a feather, will fall just as fast as a heavy object, like a
hammer.

On Earth, the time it takes an object to fall, ignoring air resistance, is given by

where  is time in seconds and  is the distance in feet. This was famously
verified on the Moon by the astronauts of Apollo 15 in 1971, who captured the
event on video. 

P = 1.11L1/2

P L

P = 1.11 (3.25)1/2 ≈ 2.0024 seconds

QUICK CHECK

Suppose the swings at a local park are 12 feet long. How long will it take
to swing back and forth once?

t = 0.25d1/2

t d

1 1
11

Photo by Monika Neumann on Pixabay

https://www.youtube.com/watch?v=6oYvffE6iGY
https://www.flickr.com/photos/lisabrideau/40606329161/
https://www.flickr.com/photos/lisabrideau/40606329161/
https://www.youtube.com/watch?v=4mTsrRZEMwA
https://pixabay.com/images/id-1247452/


The HThe H……

Variation is sometimes

called proportionality.

The phrase " varies

directly with " means

the same as "  is directly

proportional to ".

In 1930, Chicago Cubs' baseball player Gabby Hartnett caught a baseball that
had been dropped 800 feet out of a blimp before a pre-season game in Los
Angeles. Ignoring air resistance, the ball would have fallen for

According to reports, the blimp tossed out another ball which he caught as well.
The baseball reached a top speed of about 95 miles per hour.

Direct Variation

Many applications, especially in science and engineering, are expressed in the
language of variation. Our focus here is on the vocabulary and converting
between verbal and symbolic descriptions. Solving equations is left for the next
section.

Two quantities  and  are said to vary directly if  is a constant multiple of
. Algebraically this means that

for any constant .

In a variation problem the number  is called the constant of variation.
Whenever  increases by  then  will increase by a factor of .

While we normally think of  and  as single variables, they could also be
algebraic expressions. For instance, Kepler's third law describes a directly
proportional relationship between a square and a cube. It states that the square
of the time it takes a planet to orbit the Sun (called its period) varies directly with
the cube of its distance from the Sun. The equation is .

In this case the two quantities that are proportional are  and .

Of particular interest to us are equations of the form , where  varies
directly with the -th power of . Note that this is nothing more than our
standard power function model with a different name.

Recall, for instance, that the volume of a sphere is given by the power function
 where  is the radius. Using the terminology of variation, we can also

say that volume is proportional to the cube of the radius, with a constant of
variation of .

t = 0.25(800)1/2 ≈ 7 seconds

QUICK CHECK

Suppose you drop a 10 pound bowling ball off the top of a 36 foot
building. Ignoring the effects of air resistance, how long will it take to
reach the ground?

x y
1 2

12

y
x
y

x

y
x

y = k x

k

k
x 1 y k

x y

P 2 = kD3

P 2 D3

y = k xp y
p x

V = πr34
3 r

π4
3

https://www.youtube.com/watch?v=4mTsrRZEMwA


Inverse Variation

When  and the power is negative, there is another phrase that is used to
describe the relationship between  and . If

then  varies inversely with . Notice that being inversely proportional to  is

the same as being directly proportional to . For example, if ,

then  is inversely proportional to .

If two quantities vary inversely, then one increases when the other decreases,
and vice versa. This is in contrast to direct variation where both quantities
increase, or decrease, at the same time.

Two quick examples should illustrate the difference. When cooking rice, the
amount of water needed is directly proportional to the amount of rice. If you
want to cook more rice, you'll need more water. However, the time it takes to
drive a car around a race track is inversely proportional to the speed of the car.
The faster the car travels, the less time it will take to do a lap.

QUICK CHECK

Describe each of the following power functions using the terminology of
proportionality and identify the constant of proportionality.

1. 

2. 

y = 5x3/4

y = 13.71√x

y = kxp

x y

y = k x−n = k ,n > 0
1

xn

y xn xn

x−n = 1
xn

y = 4x−3

y x3

QUICK CHECK

Decide if the quantities listed are directly or inversely proportional to one
another.

1. The number of people working and the time it takes to dig a ditch.

2. The amount of yarn needed to knit a sweater and the size of the
sweater.

3. The number of air conditioners sold and the daily high temperature.

4. The fuel efficiency of a car and the speed it is traveling.



Boyle's Law

One example of inverse variation is Boyle's Law. According to Boyle's Law, if the
temperature of a gas in a sealed container is held constant, then the volume of
the gas is inversely proportional to the pressure applied. Algebraically this
means that

where  is pressure,  is volume, and the constant  depends on the initial
condition of the gas.

To see why this might be useful, suppose that a medical syringe contains 
cubic centimeter of air when it is closed and that  kilogram-
centimeters. Then the pressure in the syringe is

If the plunger of the syringe is pulled back, increasing the volume to  cubic
centimeters, then the pressure drops to

It is this drop in pressure that causes the suction needed to draw a sample of
blood.

Combining Direct and Inverse Variation

Direct and inverse variation are frequently combined together. Here we will
examine a few examples and translate the descriptions into equations.

Stopping Distance

Physics shows that the stopping distance  of a car is directly proportional to the
square of its speed  and inversely proportional to the friction  between the
tires and the road. If  is measured in miles per hour and  in feet, then

It is interesting to note that the size and weight of the vehicle are not part of the
equation. More importantly, from a safety standpoint, is the fact that doubling
the speed  results in a quadrupling of the stopping distance .

Suppose you are driving  mph down a snowy road and suddenly slam on the
brakes. When will you come to a complete stop? We now know the equation, but
before we can use it we need the friction coefficient . Finding the exact value of
the friction coefficient is difficult, but traffic engineers have calculated
approximate values for different surfaces. 

P = k V −1

P V k

0.1
k = 0.103

P = 0.103(0.1)−1 = 1.03 kilograms per square centimeter

5.0

P = 0.103(5.0)−1 = 0.0206 kilograms per square centimeter

d
v μ
v d

d =
0.0336v2

μ

v d

60

μ

1 3
13

Photo by Hannes215 on Pixabay

https://pixabay.com/images/id-2369616/


Surface Type Coefficient of Friction (μμ)
Gravel and dirt road 0.35
Wet, grassy field 0.20
Dry asphalt 0.65
Wet asphalt 0.50
Dry concrete 0.75
Wet concrete 0.60
Snow 0.20-0.25
Ice 0.10-0.15
Loose wet dirt that allows 
tires to sink about 2 in. 0.60-0.65

From Engineering Analysis of Vehicular Accidents by Randall K. Noon

In this case we will use , since the car is on snow. Substituting these
values into our equation gives a stopping distance of

So if you were traveling at 60mph down a snow covered road, it would take
about 605 feet for your car to stop once you had applied the brakes.

Newton's Universal Law of Gravity

As a final example let's now turn our attention to Newton's law of gravity. Isaac
Newton discovered that the force of gravity  between two objects, like the Sun
and the Earth, is proportional to the product of their two masses,  and ,
and inversely proportional to the square of the distance  between them.

m1 m2

d

Not drawn to scale.

In equation format, we have

As a random fact, the units of  are called "Newtons", in his honor. One Newton
is roughly equal to the weight of an apple, about 1/4 of a pound.

μ = 0.2

d = ≈ 605 feet
0.0336(60)2

0.2

QUICK CHECK

Suppose you were driving under the same conditions at a much safer
speed of  mph. What would the stopping distance be?30

F
m1 m2

d

F = k
m1m2

d2

F



Finding the Constant of Variation

Occasionally, it will be necessary to find the constant of variation. Whether
dealing with direct or inverse variation, the process is basically the same: insert
two known values into the equation and solve for .

For instance, if  varies directly with  and  when , then we can
find  by solving  by dividing both sides by  to get . With this
in hand, other values of  can be calculated using the direct variation equation

.

As another example, suppose  varies inversely with  and that  when

. Then  and, after multiplying by , we find that . So the

inverse relationship between  and  is .

Looking Ahead

In this section we were given equations that represented real life scenarios and
were able to evaluate them. In the next section we will solve these equations for
different parameters, and in the section after that we will create our own
models.

QUICK CHECK

Write an equation that matches each situation described below.

1. The intensity of a sound is inversely proportional to the square of the
distance.

2. The thrust of a propeller is proportional to the square of the speed
with which it rotates times the 4th power of its diameter.

k

y x y = 72 x = 12
k 72 = k ⋅ 12 12 k = 6

y
y = 6x

y x y = 3
x = 14 3 = k

14
14 k = 42

x y y = 42
x

QUICK CHECK

It seems reasonable that the amount of paint needed to paint a wall is
directly proportional to the surface area of the wall, since a larger wall
requires more paint. If it takes  quarts to paint  square feet, what is
the constant of variation?

5 600



2.3 Equations Involving Power Functions

Introduction

Do skydivers fall at a constant speed or do they go faster and faster the longer
they fall? Is there anything they can do to control their speed or is it completely
out of their hands?

After we spend a moment outlining the basic solving process for power
functions, we will return to these questions.

Techniques for Solving Power Equations

Since most equations involving power functions will be of the form , the
steps for solving all of them are essentially the same. First we make sure that 
is isolated. Once that has been done, we can solve for  by taking the reciprocal
power  of both sides of the equation. In general it would look like this:

Thus, the solution to  is given by . This assumes, of course,

that .

Also keep in mind that if , then  may not be a real number and

the equation would have "no real number solutions".

y = kxp

xp

x
1/p

y = kxp

= xp Divide both sides by k

x = ( )
1/p

Apply the 1/p power to both sides

y

k
y

k

y = kxp x = ( )
1/p

y

k

p ≠ 0

< 0
y

k
x = ( )

1/p
y

k

Photo from the US Air Force on Flickr

https://flic.kr/p/cecNKQ


Let's consider one concrete example. Suppose we need to solve . The
solving steps will be to first divide by  and then apply the  power.

In this case there are two  values that solve the equation. Anytime  is even we
might have multiple solutions. And while only positive solutions have
significance for many applications, we should not dismiss negative solutions
without good cause.

Stopping distance

When reconstructing accident scenes, police officers rely on a number of tools,
including measuring the length of any skid marks made by the tires. With that
distance, and an assessment of the road conditions, they can approximate the
speed of the vehicle.

So how do they do it? In the prior section we saw how to calculate the stopping
distance  using the formula

80 = 5x2

5 1/2

80 = 5x2

16 = x2 Divide both sides by 5.

x = ±(16)1/2 Apply the 1/2 power to both sides.

x = ±4 Simplify.

x p

QUICK CHECK

Use the process above to solve the following equations for , if possible.
Do not simplify your answers.

1. 

2. 

x

5 = 7x3

36 = −6x4/5

d

photo by KOMUnews

https://flic.kr/p/yHJev9


Surface Type Coefficient of Friction (μμ)
Gravel and dirt road 0.35
Wet, grassy field 0.20
Dry asphalt 0.65
Wet asphalt 0.50
Dry concrete 0.75
Wet concrete 0.60
Snow 0.20-0.25
Ice 0.10-0.15
Loose wet dirt that allows 
tires to sink about 2 in. 0.60-0.65

From Engineering Analysis of Vehicular Accidents by Randall K. Noon

where  is the speed of the car in feet per second and  is the friction coefficient
of the road surface.

When police need to find the speed of a car that was involved in an accident
they measure the distance of the skid marks, make an observation of the road
conditions, and solve this equation for .

Suppose a police investigator finds  foot long skid marks along a snowy road.
How fast was the car going? To answer this question we insert the known value
for  and the estimated  from the table and solve for . The result is

The officer can safely conclude that the car was going a around 41.3 miles per
hour.

It is easy to see that the police might need to repeat this process on a regular
basis. To simplify the work needed, it makes sense to create a formula by solving
the equation for  without inserting values for  and . Assuming , the
result is

This formula will give the same results as solving, but is more efficient and less
prone to error. In general, when a calculation needs to be repeated frequently,
it's best to find a formula rather than repeating the solving process over and
over.

d =
0.03361v2

μ

v μ

v

286

d μ
1 4

14v

286 =

1701.874 = v2 Divide both sides by  = 0.16805

v = (1701.874)1/2 Apply the 1/2 power to both sides

v ≈  41.3 Evaluate

0.03361v2

0.2
0.03361

0.2

QUICK CHECK

If 180 foot long skid marks are found on wet concrete, what was the speed
of the car?

v d μ v > 0

d =

μd = 0.03361v2 Multiply both sides by μ

= v2 Divide both sides by 0.03361

v = ( )
1/2

Apply the 1/2 power to both sides

0.03361v2

μ

μd

0.03361

μd

0.03361



Terminal Velocity

The force of aerodynamic drag  acting on a skydiver is directly proportional to
four parameters: the square of the velocity , the density of air , the drag
coefficient , and the amount of surface area  that is facing the ground, with a
constant of proportionality of . Translating the statement above, we obtain
the equation

From this information, is it possible to find a formula for velocity?

Solving for  gives the following formula:

Of the four values ( , ,  and ) that determine velocity, a skydiver has little
control over  and . The drag force  can never be greater than the skydiver's
weight, otherwise they would float instead of fall, and the density of air  at
lower altitudes is fairly consistent at about .

QUICK CHECK

Use the formula above find the speed of a car that left 180 foot long skid
marks on wet concrete, which has a friction coefficient of . How do
your results compare with the QUICK CHECK above?

μ = 0.6

FD

v ρ
C A

1/2

FD = CρAv21

2

v

v = ( )
1/2

=√2D

ρCA

2D

ρCA

D ρ C A
D ρ D

ρ

1.1kg/m2

Skydiving photo from the US Air Force on Flickr

https://flic.kr/p/cecNKQ


Falling Shape Drag Coefficient

Airfoil 0.04

Cube 1.05

Bullet 0.30

Sphere 0.47

Flat Plate 1.28

Cylinder 0.82

A skydiver can, however, alter their shape which will affect both surface area 
and the drag coefficient .

For example, suppose a skydiver weighing  Newtons (about 165 lbs) goes
into a head-first dive. How fast might they fall?

In this instance we know  and , but we'll have to make some
assumptions for  and .

Assuming a stable head down position, a surface area of about  is
reasonable, and let's choose a value for  that is a little lower than that of a
cylinder, say .

With these values in place, we can evaluate .

Our model predicts that the maximum speed (sometimes called terminal
velocity) of this skydiver in a stable head-first dive is , or around

.

Find the Inverse of a Power Function

The steps we have gone through to solve equations are essentially the same
steps needed to find the inverse of a power function. Recall that the inverse of a
basic power function  is the power function  whose
power is the reciprocal of the other.

Of course, this assumes  and that we have restricted the domain if
 is not one-to-one, such as in the case of . Finding the

inverse of a standard power function model of the form  will require
the use of the shoes and socks method, since it contains two operations.

To find the inverse of , for example, we focus on identifying the
operations performed by the function and then invert the list to find the
operations of the inverse function.

Operations
Performed by the

Function

Operations
Performed by the

Inverse

1. Apply the  power 1. Divide by 

2. Multiply by 2. Apply the  power

A
C

734

D = 165 ρ = 1.1
A C

A = 0.3m2

C
C = 0.7

v

v =√ =√ ≈  79.7m/s
2D

ρCA

(2)(734)

(1.1)(0.7)(0.3)

79.7m/s
178mph

QUICK CHECK

Imagine that our skydiver changes to a flat position so that their surface
area is  and  increases to . What is the maximum speed
under these conditions?

A = 0.6m2 C 1.0

f(x) = xp f−1(x) = x1/p

p ≠ 0
f(x) = xp f(x) = x2

f(x) = kxp

f(x) = 3x1/5

1/5 3

3 5/1



Now that we know what the inverse function does, we construct its equation as
follows:

Start with a variable:

Divide by :

Apply the th power:

Write as a function:

Notice that the inverse function does the opposite operations in the reverse
order, which should always be the case.

Hull Speed

One of the applications in Section 2.2 allowed us to find the hull speed of a boat
using the function

x

3 x/3

5 (x/3)5

f−1(x) = ( )5x
3

QUICK CHECK

Find the inverse of the following power functions.

1. 

2. 

f(x) = 2x3

f(x) = ,x ≥ 0x2/5

13

V = 1.34L1/2

Photo by James Abbot on Flickr

http://localhost:1313/2.2#tugboats
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A 2013 study by the

Pew Research Center

reported that 3% of

Americans still use dial-up

connections, primarily in

rural areas. That’s more

than 9.4 million people.

where  is the hull speed in knots and  is the length of the boat in feet at the
water line. Since  is a function of , the inverse function, if it exists, will make

 a function of . That is to say, if , then . This means

that , if we can find it, could be used to figure out how long a boat needs to
be in order to achieve a particular hull speed.

To find the inverse of  we begin by recognizing that this
function first uses the  power and then multiplies by . The inverse must
do the opposite operations in the reverse order: first dividing by  and then
applying the  power.

Now that we know what the inverse function does, we construct its equation as
follows:

Start with a variable:

Divide by :

Apply the  power:

Write as a function:

Lastly, to ensure that  is one-to-one itself we should add the condition that
.

How might this new function get used? Suppose the Navy needs to design a new
aircraft carrier with a hull speed of at least  knots. By evaluating

 the engineers could quickly know that the boat should be at least
606.48 feet long.

Note that the same answer can be found by inserting  into the original
function and solving for . In other words, evaluating the inverse function is
essentially the same as solving the original function.

Dial-up Internet

Let's consider one last example of a power function model and the importance
of its inverse. Due to the increasing availability of high-speed internet, the
number of subscribers to AOL's dial-up internet service has been decreasing. 

V L
V L

L V V = f(L) L = f−1(V )
f−1

V = f(L) = 1.34L1/2

1/2 1.34
1.34

2/1 = 2

V

1.34 V
1.34

2 ( )
2

V
1.34

L = f−1(V ) = ( )
2

V
1.34

f−1

V ≥ 0

V = 33
L = f−1(30)

V = 33
L

QUICK CHECK

Suppose you want to build a canoe that will have a hull speed of 
knots. How long should it be?

V = 5

1 5
15
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AOL subscribers, millions

The number of AOL subscribers (in millions) can be approximated by the power
function  where  is time in years since 2005. What is the
inverse of this function, and what significance might it have?

Using the techniques discussed earlier, the inverse function is

This function is useful because it allows us to approximate the time, in years
since 2005, when AOL will have  million subscriptions.

Many companies sell off divisions of their business when that part of the
company shrinks. Suppose, for instance, that AOL plans to sell off their dial-up
service once the number of subscribers drops to 1,000,000. To find out when
that would happen we evaluate the inverse function when .

This suggest that AOL would continue to offer dial-up internet for about 28
years, until the year 2033. Of course, this assumes that our original model for
the number of AOL subscriptions will continue to hold, which is never a sure
thing.

Looking Ahead

In the next section we will discuss how to take data, like the AOL data, and
create power function models that fit the data closely. Those models can then be
used to predict important future behavior.

S = f(t) = 16.32t−0.84 t

t = f−1(S) = ( )
1/−0.84

S

16.32

S

S = 1

f−1(1) = ( )
1/−0.84

  ≈  27.78
1

16.32



3.1 Exponential Functions

Introduction

Exponential functions have a type of growth that we have not studied yet, but
you have probably seen it before. Perhaps the best place to start is with an
example.

The images below illustrate three different real world examples of exponential
growth. All three are exactly the same, just in a different context.

Going Viral Nuclear Reactions Cell Division

Exponential Growth

Going Viral

The videos and games on social media sites like YouTube and Facebook can
often "go viral" when they experience a rapid increase in popularity.
Imagine, for instance, that you share a video with two friends and each of them
shares it with two new friends. If that process continues then the number of new
people viewing the video would follow the pattern:

1, 2, 4, 8, 16, 32, 64, …

http://localhost:1313/3.1#going-viral
http://localhost:1313/3.1#nuclear-reactions
http://localhost:1313/3.1#cell-division


Notice that these numbers are doubling. One doubles to get two, two doubles to
get four, four doubles to get eight, and so on. This type of increase is one
example of exponential growth.

If the numbers were to consistently triple, for example , or
quadruple like , that would also be considered exponential
growth.

Nuclear Reactions

A nuclear reaction begins when a small particle, called a neutron, crashes into an
atom and splits it in half. When that atom splits it releases more neutrons. Those
neutrons crash into other atoms and cause them to split as well.

If each atom that splits causes two more atoms to split, then the number of
reactions would follow the pattern:

Notice that these numbers are doubling. One doubles to get two, two doubles to
get four, four doubles to get eight, and so on. This type of increase is one
example of exponential growth.

If the numbers were to consistently triple, for example  or
quadruple like , that would also be considered exponential
growth.

Cell Division

All living cells reproduce by cell division. Once a cell matures, it then splits into
two new cells. These new cells can also split once they mature.

1, 3, 9, 27, …
1, 4, 16, 64, …

1, 2, 4, 8, 16, 32, 64, …

1, 3, 9, 27, …
1, 4, 16, 64, …



p y
The number of cells would follow the pattern:

Notice that these numbers are doubling. One doubles to get two, two doubles to
get four, four doubles to get eight, and so on. This type of increase is one
example of exponential growth.

If the numbers were to consistently triple for example , or
quadruple like , that would also be considered exponential
growth.

Exponential Decay

In the 2010 FIFA World Cup, teams from 16 countries competed for the world
championship of men's soccer.

In each round, the losing teams were eliminated from the tournament while the
winners advanced to the next round. This process continued until there was only
one undefeated champion: the Spanish national team. The number of teams in
each round followed the pattern:

Notice that these numbers are always halving. One-half of sixteen is eight, one-
half of eight is four, and so on. This type of decrease is an example of
exponential decay.

If each number was always one-third or one-fifth of the previous number (for
example  or ) then that would also be considered
exponential decay.

Linear vs. Exponential

These examples show us that exponential growth is special because each new
value is a multiple of the previous one. Contrast this with linear growth where
each new value is the previous value plus a constant.

1, 2, 4, 8, 16, 32, 64, …

1, 3, 9, 27, …
1, 4, 16, 64, …

16, 8, 4, 2, 1

27, 9, 3, 1 250, 50, 10, 2



Linear Growth 2 6 10 14 18

+ 4

Exponential Growth 1 2 4 8 16

x 2

+ 4

x 2

+ 4

x 2

+ 4

x 2

With linear growth, the number you add to move from one value to the next is
called the slope and is usually represented by the letter . In exponential
growth, the number we multiply by to move from one value to the next is called
the growth factor. We will use the letter  to represent the growth factor.

Recall that the only difference between linear growth and linear decay is the sign
of the slope. If  is positive, the line increases, or grows. But if  is negative,
the line decreases, or decays.

In a similar way, the only difference between exponential growth and
exponential decay is the value of the growth factor . Growth occurs when  is
large, whereas the function decays if  is small. Specifically, any growth factor

 will result in exponential decay.

Linear Decay 30 23 16 9 2

- 7

Exponential Decay 64 32 16 8 4

- 7 - 7 - 7

1
2

1
2

1
2

1
2

If we know for certain that , then we call  a decay factor. If no value
of  is specified, then we will use the term growth factor in a generic sense that
could include the possibility of growth or decay.

m

b

QUICK CHECK

1. Are the values  growing linearly or exponentially?

2. Are the values  growing linearly or exponentially?

3. Suppose a list of numbers grows exponentially with a growth factor of
. How would you find the next value in the list?

5, 10, 15, 20, . . .

5, 25, 125, 625, . . .

b = 3

m m

b b
b

0 < b < 1

0 < b < 1 b
b



Identify Characteristics of Exponential Functions

Now that we can identify exponential growth, it's time to derive the basic
equation for an exponential function.

Our first growth examples in this section followed the pattern
 where the growth factor is  and each new value is

twice the previous value. If we recall that , then a clear pattern emerges.

4=22 8=23 16=242=211=20

x 2 x 2 x 2 x 2

32=25

x 2

64=26

x 2

Using function notation we might write this as , which is nothing more
than the growth factor  raised to the power of . This gives us a clue for
how the basic equation of an exponential function should look.

All exponential functions, whether they represent growth or decay, have the
same basic form. The basic form for an exponential function is

The base of the function is the growth factor , which can be any positive
number.

We should be careful not to confuse an exponential function  with a
power function . Even though their equations look similar, they are
completely different types of functions. The key difference is that an exponential
function has a variable  in the exponent, whereas the exponent of a power
function is a fixed constant.

QUICK CHECK

Decide if the following tables display exponential growth or decay. Then
state the value of the growth factor.

90 30 10 10
3

10
9

7
16

7
4 7 28 112

1, 2, 4, 8, 16, 32, 64, … b = 2
1 = 20

f(x) = 2x

b = 2 x

f(x) = bx

b

f(x) = bx

f(x) = xp

x



The shape of the graph of an exponential function is controlled entirely by the
value of the base . In the following figure you can change the value of the base
 by moving the blue slider. As you do so, pay attention to the shape of the

graph.

To use the interactive figure visit https://www.geogebra.org/m/t1KIn8Z3

You should specifically check for each of the following behaviors, which were
introduced in Chapter 1.

Behaviors

Evaluate Exponential Functions

When we want to evaluate an exponential function we can often take advantage
of the rules of exponents. For instance, if  then

QUICK CHECK

Are any of the following exponential functions? If so, identify the base 
and decide if the function grows or decays as  increases.

1. 

2. 

3. 

4. 

5. 

b
x

f(x) = 3x

h(t) = t2

g(x) = (1/5)x

Q(x) = x0.2

P(t) = (−2)t

b
b

f(x) = 2x

f(−3/2) = 2−3/2 = =
1

√23

1

2√2

https://www.geogebra.org/m/t1KIn8Z3
https://www.geogebra.org/m/t1KIn8Z3
https://www.geogebra.org/m/t1KIn8Z3
http://chapter-1/1.3


This is an exact expression for . Sometimes it may make sense to use a
calculator to find an approximate decimal value instead. In this case,

.

How Exponential Functions Change

We said earlier that exponential functions  are special because each
time  increases by  the value of the function is multiplied by a factor of . In
other words, if  is an exponential function, then

You'll recall that this pattern was the key to identifying exponential growth and
decay.

Exponential Decay 64 32 16 8 4

1
2

1
2

1
2

1
2

Exponential Growth 1 2 4 8 16

x 2 x 2 x 2 x 2

This simple property, , is unique to exponential functions
and causes them to change in a way that is different than any other type of
function.

Consider, for example, the percent change of an exponential function  over the
interval .

f(−3/2)

f(−3/2) ≈ 0.3536

QUICK CHECK

Give exact values for the following. Use the rules of exponents as needed.

1. 

2. 

3. 

Use a calculator to approximate the following:

1. 

2. 

3. 

3−2

51/2

20

( )
1.61

2

1.5π

(1 + )
(12⋅7)0.8

12

f(x) = bx

x 1 b
f

f(x + 1) = b ⋅ f(x)

f(x + 1) = b ⋅ f(x)

f
[x, x + 1]



Percent
change

Percent change formula.

Apply the property
.

Cancel the .

Since  is constant,  is also constant. This means that the percent change
from one value to the next is always constant. Having a constant percent change
is one of the features that distinguishes exponential functions from all other
functions.

For any exponential function  with a growth factor of , the expression
 is called the growth rate of the function and is designated by the letter .

For instance, if , where , then the growth rate is .

To see why the growth rate is important, let's take a look at the total change of a
basic exponential function over the interval .

Total change formula.

Apply the property
.

Factor out .

Substitute .

f(x + 1) − f(x)

f(x)

b ⋅ f(x) − f(x)

f(x)
f(x + 1) = b ⋅ f(x)

b − 1
f(x)

b b − 1

QUICK CHECK

1. The percent changes for two functions,  and , are shown below.

Which one is an exponential function?

f g

f(x) = bx b
b − 1 r

f(x) = 1.08x b = 1.08 r = 0.08

[x, x + 1]

Δy = f(x + 1) − f(x)

= b ⋅ f(x) − f(x)
f(x + 1) = b ⋅ f(x)

= f(x)(b − 1) f(x)

= r ⋅ f(x) r = b − 1



This result indicates that difference between  and  is . In
other words, to move from one value to the next you add  times the current
function value.

For instance, if , then , meaning that every
time  increases by , the function increases by .

Difference Quotients of Exponentials

The difference quotient of an exponential function  can be simplified
as follows:

Difference quotient formula.

Insert  and 
.

Rewrite  as .

Factor out .

Since  and  are constants, the expression  is also a constant. This means

that the difference quotient of any exponential function is always proportional
to the function itself.

This is certainly different from what we observed with power functions. The
difference quotient of a power function is related to a power function with a
lower degree, not to the function itself. For instance  grows at a rate involving

. Only exponential functions grow at rates proportional to themselves.

Let's consider a specific example. If  then the difference quotient is

Use the result from above.

Insert the growth factor .

This shows that no mater which  we choose,  will always be a multiple
of the original function . For instance, choosing  gives

f(x) f(x + 1) r ⋅ f(x)
r

b = 1.08 f(x + 1) = f(x) + .08f(x)
x 1 8%

QUICK CHECK

1. Suppose . Identify both the growth factor  and the
growth rate .

f(x) = 1.26x b
r

f(x) = bx

D(x) =
f(x+h)−f(x)

h

= bx+h−bx

h
f(x + h) = bx+h f(x) = bx

= bxbh−bx

h
bx+h bxbh

= bx ( )bh−1
h

bx

b h
bh−1

h

x3

x2

f(x) = 10x

D(x) = bx ( )bh−1
h

= 10x ( )10h−1
h

b = 10

h > 0 D(x)
f(x) = 10x h = 1

D(x) = ( ) 10x = 9 ⋅ 10x
101 − 1

1



The Number e

Since every exponential function is proportional to its difference quotient, it's
possible that there are special cases where the function and the difference
quotient are identical. To pinpoint when this might happen, let's reexamine the
equation for the difference quotient of .

Notice that if , then . In other words, if we can find

values of  and  that make , then the difference quotient will equal the

function.

Although there are many combinations of  and  that make , the most

important one arises when  is chosen to be a very small, positive number. In
the interactive figure below, we have fixed . Use the slider to adjust
the value of  until you find one where .

To use the interactive figure visit https://www.geogebra.org/m/hl5o7xc8

Which value of  works? From the figure it appears that choosing  somewhere
around  does the trick.

The true value is an irrational number known as . Since  is an irrational
number,  is just an approximation of it, much like  is an approximation
of . Before we can find more precise approximations of , we need to define
exactly what  is.

QUICK CHECK

1. What is the difference quotient of .

2. Evaluate with the difference quotient of  with .

f(x) = 3x

f(x) = 3x h = 2

f(x) = bx

D(x) = bx
bh − 1

h

= 1bh−1
h

D(x) = bx = f(x)

b h = 1bh−1

h

b h = 1bh−1
h

h
h = 0.001

b D(x) = f(x)

b b
2.718

e e
2.718 3.14

π e
e

https://www.geogebra.org/m/hl5o7xc8
https://www.geogebra.org/m/hl5o7xc8
https://www.geogebra.org/m/hl5o7xc8


The number  was discovered by a Swiss mathematician, Jacob Bernoulli, as he
studied interest on loans, an application we will look at in the next section. The
name  was given by another Swiss mathematician, Leonard Euler.

While there are many ways to define , we choose to say that  is the number

which causes  as . Solving this equation for  will give us a

variation of the formula Bernoulli used to discover .

Original equation.

Multiply both sides by .

Add  to both sides.

Take the  power.

As  approaches zero, this expression approaches the number . That is to
say,

which is equivalent to one of the definitions Euler used.

The fact that  as  allows us to find more precise
approximations of  by simply making  closer to .

Euler once approximated  out to 18 decimal places as ,
all by hand. You do not need to memorize several digits of , but remembering
that  will give you a good approximation for making rough
calculations.

Today  is considered one of the most important numbers in mathematics and
science. It is used so frequently, that the exponential function with a base of  is
often called the exponential function, as though no other bases mattered. You
will find that your calculator as a button dedicated to evaluating  for any real
number .

e

e

e e

= 1bh−1
h

h → 0 b

e

= 1bh−1

h

bh − 1 = h h

bh = 1 + h 1

b = (1 + h)1/h 1/h

h > 0 e

(1 + h)1/h → e  as h → 0

(1 + h)1/h → e h → 0
e h 0

h (1 + h)1/h

0.01 2.70481

0.0001 2.71815

0.000001 2.71828

0.00000001 2.71828

e 2.718281828459045235
e

e ≈ 2.718

e
e

ex

x



Looking Ahead

In the next section we will see several applications of exponential functions, and
many of those will involve using the number  as the base of an exponential
function.

QUICK CHECK

Find the  button on your calculator and use it to evaluate the following:

1. 

2. 

3. 

4. Does  represent exponential growth or decay? What about
?

ex

e2

e−3.4

60e−.035∗15

f(x) = ex

f(x) = e−x

e



3.2 Exponential Models and Applications

Introduction

Imagine that you have a delicious mug of creamy, homemade hot cocoa that is,
unfortunately, much too hot to drink. How long should you leave it on your
kitchen counter so that it cools but doesn't lose all of its comforting warmth?

We're not ready to answer that question yet, but it should not surprise you that
it has to do with exponential functions! In this section, we will develop variations
of the basic exponential function that are used in applications as varied as
radiation therapy, population growth and, of course, the cooling of hot cocoa.

But before we discuss these specific examples, we must first learn how to
interpret the base of an exponential function and incorporate a few standard
transformations.

Growth Factor and Growth Rate

You learned in the previous section that the base  of an exponential function
 is a growth factor. For instance, if , then the growth

factor is , meaning the function is multiplied by  every time 
increases by .

We can also say that each new value of  is  larger than the
current one. This second interpretation focuses on the growth rate
rather than the growth factor .

In real world applications the growth rate is given much more frequently than
the growth factor. For instance, business commonly report that sales are up by

 or down by , instead of announcing growth factors of  or .

b
f(x) = bx f(x) = 1.08x

b = 1.08 1.08 x
1

f(x) = 1.08x 8%
r = b − 1

b

3% 5% 1.03 0.95

Hot cocoa photo by Rawpixels on Unsplash

https://unsplash.com/photos/UbMl1U1KvvA


For this reason, it is often useful to make the substitution  and write
exponential functions in the form

Note that growth occurs when  and decay occurs if .

Initial Value

Another way to change the basic exponential function  is to apply a
vertical stretch. You might recall that a vertical stretch is caused by multiplying
the function by some constant , which has the effect of multiplying each y-value
by . Use the figure below to explore the how exponential functions respond to
vertical stretches. Make a note of your observations before continuing.

To use the interactive figure visit https://www.geogebra.org/m/ZfNEAkbh

You should have noticed that multiplying an exponential function  by a
constant  causes the y-intercept to change from  to . For instance, if

, then the y-intercept will be .

b = 1 + r

f(x) = (1 + r)x

r > 0 −1 < r < 0

QUICK CHECK

1. Suppose . Identify both the growth factor and the growth
rate.

2. Write an exponential function that has a growth rate of .

3. Find an exponential function that decreases by  every time 
increases by .

f(x) = 2.6x

0.25

50% x
1

f(x) = bx

a
a

f(x) = bx

a (0, 1) (0, a)
a = 4 (0, 4)

https://www.geogebra.org/m/ZfNEAkbh
https://www.geogebra.org/m/ZfNEAkbh
https://www.geogebra.org/m/ZfNEAkbh


This is actually a consequence of the rule of exponents that says , so
 for any valid base.

The Standard Exponential Model

By including a vertical stretch with the exponential form , we
obtain a more general function

that starts with an initial value of  and grows (or decays) at a constant rate .
We will call this equation the standard exponential model. All other
exponential functions are variations of this equation.

Let's revisit an earlier example. In the final stage of the 2010 FIFA World Cup, 16
teams competed for the world championship. After each round, one-half of the
teams were eliminated and eventually Spain emerged as the champion.

b0 = 1
f(0) = a ⋅ b0 = a

QUICK CHECK

Without graphing, identify the y-intercept of the function
.f(x) = 59(0.86)x

f(x) = (1 + r)x

f(x) = a(1 + r)x

a r

QUICK CHECK

Write the equation for an exponential function with an initial value of 
that grows at a rate of .

31
25%



We now have the tools needed to model this scenario with the standard
exponential model .

Since the final stage of the World Cup starts with 16 teams, we know that 
. And if  the teams are eliminated after each round, then  and the
function

models the number of teams left after  rounds have been played.

Half-Life

Our first variation of the standard model will enable us to work with applications
that involve half lives and doubling times.

The half-life of a function is the amount of time needed for the value to be
reduced by half. Every exponential decay function has a half-life.

f(x) = a(1 + r)x

a = 16
50% r = −0.5

f(x) = 16(1 − 0.5)x = 16(0.5)x

x

QUICK CHECK

1. Write the equation of an exponential function that starts at  and
increases at a rate of .

2. Write the equation of an exponential function that starts at  and
decreases at a rate of .

8
10%

8
10%
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Years of Ownership

For instance, the exponential decay function in this graph models the value of a
sports car. The initial value of $60,000 is cut in half every 3 years, so we would
say it has a half-life of 3 years.

To make the standard model fit this situation we must stretch the  decay
out over a three-year period. In other words, we must stretch the function
horizontally by a factor of . So we can model the value of this car with the
function

where  is the initial value and  is the growth rate.

Doubling Time

On the other hand, the doubling time of a function is the amount of time
needed for the value to double. Every exponential growth function has a
doubling time.

Years of Ownership
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Consider, for example, the value of a collectible toy car like the one shown in
this graph. We say that the value of this toy car has a doubling time of 5 years,
since its value doubles every 5 years.

50%

3

f(x) = 60000(1 − 0.5)x/3

a = 60000 r = −0.5

QUICK CHECK

Create an exponential function that starts at  and is cut in half every
time  increases by .

10
x 4



To make the standard model fit this situation we must stretch the  growth
out over a five-year period. In other words, we need to stretch the function
horizontally by a factor of . This means we can model the value of this toy car
with the function

where  is the initial value and  is the growth rate.

Recognize Doubling Time and half-life Models

Let's generalize these last two examples. If an initial quantity  grows
exponentially at a rate of  every time  increases by , then that growth can be
modeled by an exponential function of the form

For instance, the function  could model an initial
quantity of  that increases by  every time  increases by .

This new form  gives us greater flexibility when modeling
realistic scenarios. Of particular interest is the case when , which gives us
the doubling time model, and the case where , which is called the
half-life model.

Doubling Time Model Half-Life Model

100%

5

f(x) = 2(1 + 1.00)x/5

a = 2 r = 1.00

QUICK CHECK

Create an exponential function that starts at 10 and doubles every time 
increases by 4.

x

a
r x c

f(x) = a(1 + r)x/c

f(x) = 18(1 + 0.64)x/7

18 64% x 7

QUICK CHECK

1. Write the equation for an exponential function that starts at 20 and
increases by  every time  increases by 3.

2. Write the equation for an exponential function that starts at  and
decreases by  every time  increases by .

87% x

30
52% x 2

f(x) = a(1 + r)x/c

r = 1
r = −1/2

f(x) = a(2)x/c
f(x) = a( )

x/c1
2



As an example, when technology innovator, Intel, produced its first
microprocessor in 1971, it contained 2300 transistors. Intel's founder, Gordon
Moore, predicted that the number of transistors on a computer chip would
double every two years. His prediction is known as Moore's law and can be
modeled by

where  is the number of years since 1971.

In 2011, Intel's Sandy Bridge processor had more than 2.2 billion transistors.
How does this compare with Moore's prediction for 2011? Since 2011 is 40 years
after 1971, we evaluate the above function with 

Calculator Evaluation of 

2300*2^(40/2) = 2411724800

which is very close to the actual value. When evaluating expressions like this on
a calculator, make sure to include parenthesis around the exponent.

QUICK CHECK

Identify the half-life of the function . Assume  is

measured in hours.

g(t) = 9.2( )
t/1.41

2 t

f(x) = 2300(2)x/2

x

x = 40

f(40) = 2300(2)40/2

QUICK CHECK

Intel released the first Pentium processor in 1993. According to Moore's
law, how many transistors should it have had?



Periodic Compound Interest

Another variation of the standard model  arises from
applications in banking and finance.

An essential concept of investing is taught in the classic movie Mary Poppins. In
one scene, Mr. Dawes tries to convince young Michael to invest his tuppence
(two pennies) in the bank with the following words of wisdom:

If you invest your tuppence, wisely in the bank
Safe and sound
Soon that tuppence, safely invested in the bank,
Will compound.

Interest is compounded when it is added to the initial account balance, or
principal. Once that interest has been added to the principal it starts earning
interest as well, compounding the effect.

In the financial world, it is common for interest to be compounded periodically
throughout the year, sometimes on a monthly, weekly or even a daily basis.

If interest is compounded  times a year, only a fraction  of the annual interest

is earned during each of those periods. If there are  interest periods per year,
the number of periods in  years would be . With this in mind, we modify the
standard exponential model to create a function for working with periodic
compound interest.

where

 is the account balance after t years
 is the principal (initial balance)

 is the annual interest rate (written as a decimal)
 is then number of compounding periods per year (ie. 12 for monthly,

52 for weekly, 365 for daily, etc.)
 is time in years

For example, if $3000 is invested at 6% compounded monthly for 8 years, the
account balance would be

When using a calculator, remember to include parenthesis around the exponent.

f(x) = a(1 + r)x

1 6
16

n r
n

n
t n ⋅ t

A(t) = P(1 + )
n⋅tr

n

A(t)
P
r
n

t

A(8) = 3000(1 + )
12⋅8

≈ 4842.43
0.06

12

QUICK CHECK

What is the account balance after 10 years if $8500 is invested at 3%
compounded weekly?



Continuous Compound Interest

It is logical to wonder what might happen if we were to increase the number of
compounding periods  over the course of a year. Let's investigate.

Suppose you invest  at  interest for one year. Using ,
 and , the accompanying table shows the account balance  for

ever increasing values of .

1 $26,250.00

12 $26,279.05

52 $26,281.15

365 $26,281.69

1,000 $26,281.74

10,000 $26,281.77

100,000 $26,281.78

1,000,000 $26,281.78

The table suggests that more frequent compounding does not produce
unlimited growth over the course of a year. For instance, compounding interest
365 times a year (every day) gives a balance of $26,281.69, which is only very
slightly better than compounding just 12 times a year (every month).

It also appears that no matter how many times we compound interest, the
balance never gets above $26,281.78.

To explain why more frequent compounding does not produce unlimited wealth,

consider what happens to the equation  as . If  gets

larger, then .

In the past we've used the letter  for quantities that get close to zero. We will
follow that convention and make the substitution . Note that this implies

. With these changes we rewrite  as follows:

Start with the periodic compound interest
function.

Substitute  and .

Rewrite  as .

Rewrite using the rule of exponents
.

n

$25, 000 5% P = 25000
r = 0.05 t = 1 A

n

n A(1) = 25000(1 + )
n⋅10.05

n

A(t) = P(1 + )
ntr

n
n → ∞ n

→ 0r
n

h
h = r

n

n = r
h

A(t)

A(t) = P(1 + )ntr
n

A(t) = P(1 + h)
( )tr

h
h = r

n
n = r

h

A(t) = P(1 + h)
( )rt1

h ( ) tr
h

( ) rt1
h

= P[(1 + h) ]
rt1

h

xmn = (xm)n



The expression in brackets  might remind you of something from the

previous section. If  then . This is the reason for
the limit. Compounding interest more and more frequently makes the base
closer and closer to . The resulting function

is known as the continuous compound interest formula and is widely used in
finance, business and economics.

Work with Continuous Growth

Aside from compound interest, there are many other quantities that change
continuously. For instance, the number of bacteria in a petri dish does not
increase suddenly at the end of a day, week or month. Rather the population
increases continuously at a rate that is proportional to the size of population.

Similarly, the amount of carbon-14 in an object decays continuously.

When used in different settings such as these, the  formula is often
referred to as "continuous growth".

In general, we will say a quantity that experiences continuous exponential
growth (or decay) can be modeled by a function of the form

where  is the initial quantity when  and  is the continuous rate of
growth.

The continuous exponential growth function is often written with different
letters to match specific application. You will need to be able to recognize
continuous growth regardless of how the function is written. For example,

[(1 + h)1/h]
h → 0 (1 + h)1/h → e ≈ 2.71828

e

A(t) = Per t

A(t) = Pert

f(t) = aekt

a x = 0 k

Q(x) = Q0e
kx

n(t) = n0e
rt

y = Cerx

Photo from the National Cancer Institute

https://visualsonline.cancer.gov/retrieve.cfm?imageid=2230&dpi=300&fileformat=jpg


are all continuous growth models.

Unlimited Growth

In general, exponential growth cannot be sustained unless there are unlimited
resources. For this reason it is sometimes called unlimited growth. A historic
example of this is "tulipmania".

During the 1630's, Holland was crazy for tulips and their value skyrocketed
exponentially. At one point, tulip prices were as much as 20-times higher than
they had been just months before. Some economists estimate that half of all the
money in the Dutch economy was wrapped up in the tulip market. Such a huge
exponential rate of growth was not sustainable and soon the tulip market
crashed, bankrupting many Dutch citizens.

In the next few examples we look at situations where, instead of exploding, the
growth is limited and eventually levels off. Surprisingly, exponential functions
are at the center of those applications as well.

QUICK CHECK

1. What are the distinguishing features of continuous exponential
growth?

2. What is the continuous rate of growth (or decay) of the function
 ?f(x) = 36e−0.03x



Newton's Law of Cooling

Suppose you put a pizza in a 450°F oven. The temperature of the pizza will
increase, but in a limited way since it will never exceed the temperature of the
oven. Isaac Newton studied situations like this and discovered a law that
modeled the heating or cooling of an object.

Newton's law of cooling says that rate of temperature change in an object is
proportional to the temperature difference between the object and its
surroundings. Based on this, Newton found that the temperature of an object at
time  is given by

where  is the temperature of the surroundings (or the temperature of the
oven, in this case)  is the initial temperature of the object (or the original
temperature of the pizza), and  is a positive constant that depends on the
nature of the object.

This function models cooling when  and heating if .

S

To

To

S

Hea�ng Cooling

In either case,  is a horizontal asymptote. Also notice that the resulting
curves are nothing more than exponential functions that have been reflected
and/or shifted vertically.

t

T (t) = S + (T0 − S)e−k t

S
T0

k

T0 > S T0 < S

y = S

Photo by Eneida Nieves from Pexels

https://www.pexels.com/photo/baked-pizza-on-pizza-peel-in-oven-905847/


Let's consider a cooling example. Suppose you put a 160°F hot cup of cocoa on
the counter in a 70°F kitchen. The cocoa will cool according to Newton's law of
cooling as it approaches room temperature.

Assuming , what will be the temperature of the cocoa in 20 minutes?

We conclude that after 20 minutes the temperature of the cocoa is roughly 88°F.

Logistic Growth

Our final variation of the standard exponential model has its roots in population
growth.

Imagine that a small number of trout are introduced into a large lake. When the
population is small, the amount of food and resources available appears
unlimited, and the population grows exponentially. But as the population
increases, resources become more scarce and the growth levels off.

In 1838, Belgian mathematician Pierre-Francois Verhulst created a function that
has this very behavior. His function, now called the logistic function, assumes
growth is proportional to both the current population size and the available
resources. The equation and graph of a logistic function are given below. The
values ,  and  are constants.

k = 0.08

T (t) = S + (T0 − S)e−k t

= 70 + (160 − 70)e−0.08⋅20

= 70 + 90e−1.6

≈ 88.17

a b c

Hot cocoa photo by Rawpixels on Unsplash

https://unsplash.com/photos/UbMl1U1KvvA


c

f (x) =
1+ae-bx

c

The number  is a horizontal asymptote of the function and is often called the
carrying capacity. In the trout example, it would represent the maximum
number of trout that the lake can support.

Looking Ahead

In this section we have used transformations to create a wide variety of
exponential models.

c

QUICK CHECK

Suppose the population of trout in a particular mountain lake is modeled
by the logistic equation  where  is the number of years

since the lake was first stocked.

1. Calculate the initial trout population.

2. What is the carrying capacity, or maximum number of trout the lake
can support?

3. Determine the trout population  years after the lake was stocked.

f(x) = 20000
1+39e−0.2x x

10



Standard model

half-life

Doubling Time

Compound Interest

Continuous Growth

Newton's Law of Cooling

Logistic

We will return to these models later when we solve exponential equations. The
main tool for solving exponential equations is called the logarithm, and it just
happens to be the focus of the next section.

f(x) = a(1 + r)x

f(x) = a( )
x/c1

2

f(x) = a(2)x/c

A(t) = P(1 + )
n tr

n

f(x) = aek x

T (t) = S + (T0 − S)e−k t

f(x) = c
1+ae−b x

http://localhost:1313/3.2#the-standard-exponential-model
http://localhost:1313/3.2#half-life
http://localhost:1313/3.2#doubling-time
http://localhost:1313/3.2#periodic-compound-interest
http://localhost:1313/3.2#work-with-continuous-growth
http://localhost:1313/3.2#newtons-law-of-cooling
http://localhost:1313/3.2#logistic-growth


The HP-35 was the first

handheld scientific

calculator. Developed by

Hewlett-Packard, it went

on sale in 1972 for $395.

Photo by Julian Bucknall

3.3 Logarithmic Functions

Introduction

Up until the invention of scientific calculators in the 1970's, people relied on
300-year-old mechanical calculators called "slide rules".

Slide rules use the properties of exponents to simplify calculations. For example,
multiplication turns into addition and division becomes subtraction.

To build a slide rule you need a function that can extract exponents. Such
functions are called logarithmic functions and just happen to be the inverses of
exponential functions. In this section we will study logarithms and even learn
how to use a simple slide rule.

Definition of Logarithms

We learned in a previous chapter that every one-to-one function has an inverse.
Since the exponential function  (where  and ) is one-to-one, it must
have an inverse.

The inverse of the exponential with base  is called the logarithm with base 
and is written .

1 7
17

bx b > 0 b ≠ 1

b b
logb(x)

Photo by john allspaw

https://flic.kr/p/7E2Vki
http://chapter-1/1.4
https://flic.kr/p/ySbGa


To convert between

exponential and

logarithmic equations it is

easiest to first identify the

base and then remember

that the logarithm equals

the exponent.

x

x
As with exponential functions, the base  must be a positive number not equal
to .

In other words, as long as the base is the same, the functions  and  are
inverses of each other.

Function Inverse

Convert Between Exponential and Logarithmic Equations

Whenever a function has an inverse, we know that  if and only if
. In the present context, this inverse relationship means that 

is equivalent to .

This gives us the ability to rewrite exponential equations as logarithmic
equations and/or convert logarithmic equations into exponential equations. 

b
1

bx logb(x)

f(x) = 3x

g(x) = log4(x)

h(t) = 2t

q(x) = log10(x)

QUICK CHECK

1. What is the inverse of ?

2. What is the inverse of ?

f(x) = 7x

g(x) = log13(x)

f(x) = y

f−1(y) = x y = bx

logb(y) = x

1 8
18



exponent

base
For example, the exponential equation  is equivalent to logarithmic
equation .

Going the other direction,  means the same thing as 
. Here are a few more examples.

Exponential Equation Logarithmic Equation

a.

b.

c.

d.

e.

f.

Evaluate Logarithms

The inverse relationship

can also be used to evaluate logarithms by rewriting known exponential values.
To illustrate this point, let's compute a few values of  by looking at known
values of .

9 = 32

log3(9) = 2

log10(1000) = 3 1000 = 103

53 = 125

92 = 81

3y = 4

log2(16) = 4

log3(27) = 3

log10(x) = 5

QUICK CHECK

1. Write a logarithmic equation that is equivalent to .

1. Write an exponential equation that is equivalent to .

24 = 16

log7 49 = 2

y = bx⟺ logb(y) = x

log2(x)
2x



The buttons for 

and  on different

calculators are shown

below.

Notice that in each instance the logarithm is the exponent. For example,
 because  is the exponent that makes .

Of course, logarithmic functions can also be evaluated on a calculator. Starting
with the HP-35 in 1972, two different logarithms have been built into every
handheld scientific and graphing calculator: the common log and the natural
log. 

The common logarithm has a base of . It is written as  (lowercase LOG). The
natural logarithm has a base of . It is written as  (lowercase LN).

Graph Logarithmic Functions

We can also use the inverse function relationship to sketch graphs of logarithmic
functions. Remember, with inverse function if the point  is on the graph of

 then the point  is on the graph of .

Use the figure below to help you graph . As you move the blue point, the
pencil will plot its inverse (in black).

y = 2x⟺ log2(y) = x

1 = 20
⟺ log2(1) =

2 = 21
⟺ log2(2) =

4 = 22
⟺ log2(4) =

8 = 23
⟺ log2(8) =

log2(8) = 3 3 2x = 8

1 9
19

log
ln

10 log
e ln

QUICK CHECK

1. Use a calculator to evaluate .

2. Use a calculator to evaluate .

log 1000

ln 1000

(x, y)
f (y,x) f−1

log2(x)

http://localhost:1313/img/chapter-3/HP-35_large.jpg


To use the interactive figure visit https://www.geogebra.org/m/NqdtIjsk

You may want to verify that each of the following points is on the appropriate
graph.

Point on Point on

Like exponential functions, the shape of the graph of a logarithmic function is
controlled entirely by the value of the base . Each base will have its own, slightly
different graph. Use the following interactive figure to change the value of  and
analyze the behavior of the function.

To use the interactive figure visit https://www.geogebra.org/m/u2R6RhFZ

Specifically, look for any of the 9 basic function properties. Click each property to
check your observations.

f(x) = 2x f−1(x) = log2(x)

(0, 1) (1, 0)

(1, 2) (2, 1)

(2, 4) (4, 2)

(3, 8) (8, 3)

b
b

https://www.geogebra.org/m/NqdtIjsk
https://www.geogebra.org/m/NqdtIjsk
https://www.geogebra.org/m/NqdtIjsk
https://www.geogebra.org/m/u2R6RhFZ
https://www.geogebra.org/m/u2R6RhFZ
https://www.geogebra.org/m/u2R6RhFZ


Domain and Range
y-intercept
x-intercepts
Increasing, Decreasing, Constant
Maximums & Minimums
Concavity
Asymptotes
Symmetry
1:1

Understand How Logarithmic Functions Change

Every time we define a new function, we need to investigate the way it changes.

Let's start by looking at the average rate of change  over several intervals.

For convenience, we will use the common logarithm  and, to simplify the
calculations, we will choose intervals  that have a width of .

Interval

What do these values for  in the table tell us about the common logarithm

function? It appears that  changes more when  is small than it does when
 is large. In other words, the values of  are further apart when  is small,

and closer together when  is large. The difference quotient will help us
understand why this happens.

Difference Quotient of Logarithmic Functions

In earlier chapters we saw that the difference quotient of a function, given by

, is a function that describes how  changes on any interval

of length .

Unlike power functions and exponential functions, it is very difficult to simplify
the difference quotient of a logarithmic function by hand, so we will not attempt
that.

However, since  is itself a function, we can take a look at its graph and see
if it has any interesting properties.

It the figure below, the graphs of  and its difference quotient
 are shown in black and in red, respectively.

Δy

Δx

log(x)
[a, b] Δx = 1

= =
Δy

Δx

f(b)−f(a)

b−a

log(b)−log(a)

b−a

[0.001, 1.001] = = 3.000
Δy

Δx

log(1.001)−log(0.001)

1.001−0.001

[1, 2] = = 0.301
Δy

Δx

log 2−log 1

1−0

[2, 3] = = 0.176
Δy

Δx

log 3−log 2

3−2

[3, 4] = = 0.125
Δy

Δx

log 4−log 3

4−3

[50, 51] = = 0.009
Δy

Δx

log 51−log 50

51−50

[100, 101] = = 0.004
Δy

Δx

log 101−log 100

101−100

Δy

Δx

log(x) x

x log(x) x
x

D(x) =
f(x+h)−f(x)

h
f

h > 0

D(x)

f(x) = logb(x)
D(x)



We have fixed , but the value of the base  can change, allowing us to
view the difference quotient for several different logarithms. Use the blue slider
to change the value of  and see if you recognize  as one of the basic
functions from Chapter 1.

To use the interactive figure visit https://www.geogebra.org/m/XWcmkpYg

No matter which base is chosen, the graph of  always looks like the
reciprocal function . And the fact that  is large when  is small but small
when  is large confirms our earlier observation that logarithmic functions
change rapidly when  is small but that the rate slows down as  increases.

Logarithmic Scales

When we plot values for  on a number line it quickly becomes apparent
that they are not evenly spaced. The smaller values are spread out while the
larger values are more compressed.

log 1
 

log 2
 

log 4
 

log 7
 

log 10
 

0 1

If we use the logarithms as increments and relabel the axis we end up with
something called a logarithmic scale.

Logarithmic Scale

1 2 3 4 5 6 7 8 910

Logarithmic scales have several applications, some of which will be covered in
the next section. For now, we will use it like a ruler to measure lengths. In the
process, we hope to uncover at least one property of logarithms.

Product Rule for Logarithms

We now turn our attention to some rather useful properties that deal with
combining logarithms through addition and subtraction. Rather than deriving
these properties by rewriting rules of exponents, we will attempt to discover
some of them by using the logarithmic scale in this interactive figure. Keep in
mind that since logarithms are exponents, we cannot expect the normal rules of
addition to work.

h = 0.001 b

b D(x)

D(x)
1/x 1/x x

x
x x

log(x)

http://chapter-1/1.3#the-reciprocal-function
https://www.geogebra.org/m/XWcmkpYg
https://www.geogebra.org/m/XWcmkpYg
https://www.geogebra.org/m/XWcmkpYg


To use the interactive figure visit https://www.geogebra.org/m/iLAuEp1a

Start by adding two logarithms. For instance, find  by putting
both  and  end-to-end on the log scale. Is the answer  ?
Experiment with other combinations to see if there is a pattern for addition.

Then move on to expressions like . Since you are not given a bar
for  you might have to find multiple bars that add up to  before you
subtract  away from them.

Use a calculator to check your work and make a note of your results before
continuing.

Let's look closely at what you might have found from the interactive figure. This
is what it would look like if you placed  and  end-to-end on the log
scale.

Notice that the resulting bar lines up with  on the log scale. We learn from this
that  or, in other words,

If you try this with other values you will find that it is always true. The pattern is

and is called the product rule.

log(3) + log(5)
log(3) log(5) log(8)

log(9) − log(3)
log(9) log(9)

log(3)

log(3) log(5)

15
log(3) + log(5) = log(15)

log(3) + log(5) = log(3 ⋅ 5)

log(x) + log(y) = log(x ⋅ y)

QUICK CHECK

1. Verify the product rule  by evaluating
both  and  on your calculator.

log(x) + log(y) = log(x ⋅ y)
log(18) + log(2) log(18 ⋅ 2)

https://www.geogebra.org/m/iLAuEp1a
https://www.geogebra.org/m/iLAuEp1a
https://www.geogebra.org/m/iLAuEp1a


Quotient Rule for Logarithms

Since addition always tells us something about subtraction, let's take another
look at .

We know that , but what if we were to remove the
 from the figure above? The only thing left would be . In other

words, . Since  the pattern for subtraction is

 which is known as the quotient rule.

Power Rule for Logarithms

One of the most useful logarithm properties is called the power rule. Consider
what happens when you add  with another .

Clearly . And since , this result can also be given

as .

But it is also proper to write , just as we might write
.

Putting the two together we see that . The general pattern is

and will be used extensively throughout the rest of this chapter.

Properties of Logarithms

The properties we discovered are valid for all logarithms, no mater which base is
used. We have listed them below in their general form. You are encouraged to
use a calculator to check the given examples.

log(3) + log(5)

log(3) + log(5) = log(15)
log(5) log(3)

log(15) − log(5) = log(3) = 315
5

log(x) − log(y) = log( )x
y

QUICK CHECK

1. Verify the pattern  by evaluating both

 and  on your calculator.

log(x) − log(y) = log( )xy
log(27) − log(13) log( )27

13

log(3) log(3)

log(3) + log(3) = log(9) 9 = 32

log(3) + log(3) = log(32)

log(3) + log(3) = 2 ⋅ log(3)
5 + 5 = 2 ∗ 5

log(32) = 2 ⋅ log(3)

logxp = p ⋅ log(x)



Identity Formula Example

Product
Rule

Quotient
Rule

Power
Rule

Logarithms Throughout History

Tables of Logarithms

When John Napier discovered logarithms in 1614, he realized that with these
logarithm rules, every operation could be converted to a simpler one.

The power rule changes multiplication into addition; the quotient rule turns
division into subtraction; and the power rule replaces powers with
multiplication.

The only tool needed to use these simplifications is a table of logarithmic values.

To illustrate how to use a table of logarithms, we'll examine a very simple case.
Suppose we wanted to multiply  and . Rather than doing the multiplication, we
look up the two logarithms in the table and calculate their sum:

.

logb(x ⋅ y) = logb(x) + logb(y) ln(20) = ln(4) + ln(5)

logb( ) = logb(x) − logb(y)
x

y
ln( ) = ln(10) − ln(2)

10

2

logb x
p = p logb(x) ln(23) = 3 ln(2)

QUICK CHECK

1. Use the product rule to rewrite 

2. Use the quotient rule to rewrite 

3. Use the power rule to rewrite 

log(7) + log(3)

ln(8) − ln(4)

log(3x)

2 3

log(2) + log(3) = 0.301 + 0.477 = 0.778

http://upload.wikimedia.org/wikipedia/commons/4/4b/John_Napier_%28Neper%29.jpg


Next, we scan through the table until we find . Lastly, we read the table
backward to find the  next to . This value,  is the answer to our
multiplication problem!

What we just did was a product rule: . And while our
example was overly simple, the time saved when working with large numbers is
tremendous since adding large numbers by hand is much faster than multiplying
them.

0.778
x 0.778 x = 6

log(2) + log(3) = log(2 ⋅ 3)

QUICK CHECK

Explain how you could use the above table and the properties of
logarithms to evaluate the following:

1. 

2. 

3. 

4 × 2

10 ÷ 2

32



Slide Rules

The rules of logarithms sped up calculations even more after the invention of
slide rules.

Slide rules look similar to regular rulers except that the markings are not evenly
spaced. Instead, the distances are proportional to the logarithms of the marked
values. In essence, a slide rule is just two logarithmic scales, one placed on top
of the other so they can slide back and forth.

Let's see how this works. Suppose you wanted to multiply . The first step is
to slide the top scale to the right until the  is above the . Next move the
hairline so that it is over the  on the top scale. The answer, , will be directly
below on the lower scale.

To use the interactive figure visit https://www.geogebra.org/m/xHcwR0N3

Sliding the upper scale is a physical way to add logarithms and use the product
rule. And while it may not be as precise as a table, it is very quick. Notice that no
extra work is needed to calculate other multiples of  because all the numbers
on the top scale are now lined up with their multiples on bottom scale.

Looking Ahead

Modern calculators and computers have rendered both logarithm tables and
slide rules obsolete.

However, the properties of logarithms that were developed in this section are
valuable tools for solving exponential equations.

2 ⋅ 3
1 2

3 6

2

Photo by john allspaw

https://www.geogebra.org/m/xHcwR0N3
https://www.geogebra.org/m/xHcwR0N3
https://www.geogebra.org/m/xHcwR0N3
https://flic.kr/p/ySbGa


We will also return to logarithmic scales, but with a slight twist, at the end of the
next section.



3.4 Logarithmic Models and Applications

Introduction

The human senses are capable of perceiving a wide range of stimuli. Our sense
of hearing, for example, picks up both faint whispers and highly amplified music.

One reason for this is the fact that your ears don't perceive the actual intensity
of sound, rather they respond approximately to logarithm of the sound intensity.
For example, if you increase the intensity of a sound 10 times, it will only sound
about twice as loud.

In this section we will discuss several applications of logarithms including the
decibel scale, which is used to measure the intensity of sound.

Logarithmic Scales

When measuring quantities that vary greatly, like sound intensity, it's often
convenient to work with logarithmic scales. As we saw earlier, one of the nice
features of logarithmic functions is that they expand small values and condense
larger ones. Observe, for instance, the values of  given in this table.log(x)

Photo by Matthieu A on Unsplash

https://unsplash.com/photos/bXjqPckmLD8


A decibel is one tenth

(deci-) of a bel, a unit

named after Alexander

Graham Bell, and is

abbreviated as dB.

0.001 -3

0.01 -2

0.1 -1

1 0

10 1

100 2

1000 3

Even though each  value increases by a factor of 10, the  values only
increase by . By using a logarithmic scale we can view a large range of data
values without having to use enormous numbers.

Because of the convenience of a 10-fold increase, most logarithmic scales use
 rather than . This is true of the pH scale, the Richter scale, the stellar

magnitude scale and the decibel scale, which we will examine next.

The Decibel Scale

Sounds that cause unbearable pain are about 10 trillion times more intense than
the faintest sounds that can be heard. With such a wide range, using the actual
values is not very convenient.

Realizing this, engineers at Bell Telephone Laboratories developed the decibel
scale in the 1920's to rank the intensity of sounds with respect to the lowest

sound level a listener can detect, called the threshold of hearing.

To find the decibel level (in dB) of a sound we use the formula

x log(x)

x logx
1

log ln

2 0
20

D = 10 log( )I

I0

Photo by Matthieu A on Unsplash

https://unsplash.com/photos/bXjqPckmLD8


where  is the intensity of the sound being ranked and  is the threshold of
hearing, both measured in watts per square meter. And while hearing ability
varies from person to person, it is generally accepted that  watts per
square meter.

As an example, the sound of a typical household vacuum cleaner has an
intensity of  watts per square meter. On the decibel scale this would
measure

A few other decibel levels are given below for comparison.

decibel
level

Intensity in
watts/m

Threshold of Hearing

Whisper

Normal Conversation

Busy Street Traffic

Hairdryer

Front Rows of a Rock
Concert

Threshold of Pain

Instant Perforation of the
Eardrum

I I0

I0 = 10−12

10−4

D = 10 log( )

= 10 log(108)
= 10 × 8
= 80 dB

10−4

10−12

2

0 dB 0.000000000001

20 dB 0.0000000001

60 dB 0.000001

70 dB 0.00001

90 dB 0.001

110 dB 0.1

130 dB 10

140 dB 100

QUICK CHECK

Some of the quietest dishwashers on the market produce only about
 watts per square meter of sound. Where would that rank on the

decibel scale?
4 × 10−8



The Stellar Magnitude Scale

One of the oldest logarithmic scales is the apparent magnitude scale used for
measuring the brightness of stars.

It dates back at least to the Greek astronomer Hipparchus who categorized stars
into 6 magnitudes, from weakest ( ) to brightest ( ). The stars in each magnitude
were roughly twice as bright as those in the prior magnitude.

Today astronomers have a precise magnitude scale and use the following
equation to calculate the apparent magnitude  of a star in a particular color of
light:

In this formula  is the observed flux (ie. brightness) of a star and  is a
reference flux in the same color. Flux is usually given in watts per square meter.
When working with visible light, we use the brightness of the star Vega as the
reference flux:  watts/m .

Suppose, for instance, that we wanted to find the apparent magnitude of the
Sun, which has a flux of  watts/m .

This number might seem low at first, but remember that the apparent
magnitude scale puts the brightest objects low on the scale and the weakest
objects at the top.

6 1

m

m = −2.5 log( )F

F0

F F0

F0 = 2.8 × 10−8 2

1340 2

m = −2.5 log( ) ≈ −26.7
1340

2.8 × 10−8

Photo by Denis Degioanni on Unsplash

https://https//unsplash.com/photos/9wH624ALFQA


Typical pH values of

common substances.

13

12

11

10

9

8

7

6

5

4

3

2

1

0

14

Soapy water

Ammonia

Borax

Baking soda

Sea water

Distilled water

Urine

Black coffee

Honey

Orange juice

Lemon juice

Gastric acid

Lye

The pH Scale

In chemistry, the acidity of a substance is measured on a logarithmic scaled
called the pH scale.

To calculate pH we use the formula

where  is the concentration of hydrogen ions, measured in moles per liter,
found in the substance.

For example, household bleach has a hydrogen ion concentration of
 moles per liter, whereas the concentration in milk is nearly a

million times greater at  moles per liter. Their rankings on the pH
scale are

The Richter Scale

In the early 1930's, Charles Richter was attempting to measure the strength of
earthquakes in California. He soon came to the conclusion that the range
between the largest and smallest earthquakes was "unmanageably large".

At that point a colleague suggested he plot the amplitudes logarithmically. Even
though Richter felt that "logarithmic plots are a device of the devil", he gave
them a try and soon "I saw that I could now rank the earthquakes one above the
other. ... This set of logarithmic differences thus became the numbers on a new
instrumental scale." (See Earthquake Information Bulletin, Volume 12, Issue 1,
1980.)

QUICK CHECK

1. Sirius is the brightest star in the night sky. The flux of Sirius is
 watts/m . What is the apparent magnitude of Sirius?

2. The full Moon is the brightest object in the night sky. When full, it's
flux is about  watts/m . What is the apparent magnitude of a full
moon?

F = 1.1 × 10−7 2

0.004 2

pH = log( ) = − log [H+]
1

[H+]

[H+]

2.512 × 10−13

1.995 × 10−7

pHbleach = − log(2.512 × 10−13) ≈ 12.6

pHmilk = − log(1.995 × 10−7) ≈ 6.7

QUICK CHECK

Lime juice has a hydrogen ion concentration of  moles
per liter. Where does lime juice rank on the pH scale?

[H+] = 0.00631



MagnitudeMagnitude DateDate Loca�onLoca�on

9.59.5 May 22, 1960May 22, 1960

9.29.2 Mar 28, 1964Mar 28, 1964 Prince William Sound, AlaskaPrince William Sound, Alaska

9.19.1 Dec 26, 2004Dec 26, 2004 Northern Sumatra, IndonesiaNorthern Sumatra, Indonesia

99 Mar 11, 2011Mar 11, 2011 Honshu, JapanHonshu, Japan

99 Nov 4, 1952Nov 4, 1952 Kamchatka Peninsula, RussiaKamchatka Peninsula, Russia

8.88.8 Feb 27, 2010Feb 27, 2010

8.88.8 Jan 31, 1906Jan 31, 1906

8.78.7 Feb 4, 1965Feb 4, 1965 Rat Islands, AlaskaRat Islands, Alaska

8.68.6 Mar 28, 2005Mar 28, 2005 Northern Sumatra, IndonesiaNorthern Sumatra, Indonesia

8.68.6 Aug 15, 1950Aug 15, 1950 Assam, TibetAssam, Tibet

8.68.6 Apr 11, 2012Apr 11, 2012 Northern Sumatra, IndonesiaNorthern Sumatra, Indonesia

8.68.6 Mar 9, 1957Mar 9, 1957

8.58.5 Sep 12, 2007Sep 12, 2007 Southern Sumatra, IndonesiaSouthern Sumatra, Indonesia

8.58.5 Feb 1, 1938Feb 1, 1938

8.58.5 Feb 3, 1923Feb 3, 1923 Kamchatka Peninsula, RussiaKamchatka Peninsula, Russia

Valdivia, ChileValdivia, Chile

Maule, ChileMaule, Chile

Esmeraldas, EcuadorEsmeraldas, Ecuador

Andreanof Islands, AlaskaAndreanof Islands, Alaska

Banda Sea, IndonesiaBanda Sea, Indonesia

Largest Earthquakes since 1900Largest Earthquakes since 1900

On the Richter scale the magnitude  of an earthquake is given by

where  is the earthquake's reading on a seismograph, an instrument used to
measure the motion of an earthquake.

Richter arbitrarily chose  to be an earthquake whose reading shows a 0.001
millimeter movement on a seismograph that is 100km away from the center of
the earthquake. Due to the logarithmic basis of the scale, each whole number
increase in magnitude represents a tenfold increase in the intensity of the
quake.

Solve Exponential Equations

Another major use of logarithms is found in solving exponential equations. Here
we aim to explain the basic principles at work. A number of detailed examples
and techniques will be discussed Section 3.5.

Because logarithms and exponentials are inverses of each other, the following
cancellation properties hold:

and

These properties imply that taking a logarithm and exponentiation are inverse
operations, as long as the bases are the same.

For example, applying the base  logarithm is the opposite of applying the base
 exponential. Thus, an expression like  simplifies to , because the

log cancels the exponential.

R

R = log( )I

I0

I

I0

QUICK CHECK

The 1906 earthquake in San Francisco would have had a seismographic
reading of 7643 millimeters 100km from the epicenter. Determine its
magnitude on the Richter scale.

logb(b
x) = x for all x

blogb(x) = x for x > 0

10
10 log10(10π) π

QUICK CHECK

1. What is the opposite of applying the base  logarithm to an equation?

2. What is the opposite of exponentiating with a base of ?

3. Use a cancellation property to simplify .

4. Use a cancellation property to simplify .

3

4

2log2(13)

log6(681)

http://localhost:1313/img/chapter-3/seismograph.jpg
http://localhost:1313/3.5


One way to solve an exponential equation is to apply a logarithm with the same
base to both sides, so that we can apply the cancellation properties.

For instance, to solve , we can take the base-3 logarithm of both sides
and simplify.

Apply  to both sides.

Use the cancellation property.

The only difficulty with this method is that we do not have a convenient way to
approximate . It would be nice if we could rewrite this value using
either the common or natural logarithms, for then we could use the LOG  or
LN  buttons on a calculator.

Whenever we encounter an exponential equation such as , we should
always consider taking the natural logarithm  of both sides. Since logarithms
are one-to-one, taking the natural logarithm of both sides does not change the
solution. It does however, allow us to reformat the equation using the power
rule. After using the power rule, the equation will be much simpler to solve.

To illustrate how this is done, we will solve the exponential equation 
for .

Apply  to both sides.

Use the power rule.

Divide both sides by .

Use LN button to obtain a decimal

approximation.

We chose  simply because most calculators have a LN  button. Had we used
a  or any other logarithm for that matter, the answer would have been the
same.

3x = 100

3x = 100

log3(3x) = log3(100) log3

x = log3(100)

log3(100)

3x = 100
ln

3x = 100
x

3x = 100

ln(3x) = ln(100) ln

x ⋅ ln(3) = ln(100)

x =
ln(100)

ln(3)
ln(3)

x ≈ 4.1918

ln
log

QUICK CHECK

1. Use your calculator to verify that log(100)/log(3)  gives the same
value as ln(100)/ln(3) . Does this mean that  and  are the
same thing?

log ln



Change of Base Formula

We have just solved the equation  three different ways. One answer

was , another was , and in the last QUICK CHECK we

saw that  is also a solution. How do we reconcile these three

solutions?

Since all exponential functions are one-to-one, the equation  can only
have one solution, and we are forced to conclude that all three are equal:

What we have discovered is a way to evaluate  by utilizing either  or

.

In practice, we can evaluate a logarithm with any base by rewriting it as an
expression involving  or .

or

We use  or  simply because calculators have LOG  and LN  buttons. In
theory, any other logarithm  could be used:

which is called the generic change of base formula. It allows us to convert
from one base to any other base.

3x = 100

x = log3(100) x =
ln(100)

ln(3)

x =
log(100)

log(3)

3x = 100

log3(100) = =
ln 100

ln 3

log 100

log 3

log3 100 ln
log

ln log

logb(x) =
log(x)

log(b)

logb(x) =
ln(x)

ln(b)

log ln
loga

logb(x) =
loga(x)

loga(b)

QUICK CHECK

1. Use the change of base formula to approximate .

2. Use the change of base formula to approximate .

log7(13)

log4(68)



3.5 Exponential and Logarithmic
Equations

Introduction

Since exponential and logarithmic functions arise in many applications, it is
essential to be able to manipulate and solve equations involving them. As an
example of the type of problems we might encounter, consider the following
situation.

A patient who is undergoing diagnostic imaging for thyroid cancer typically
swallows a capsule containing the radioactive isotope Iodine-123 shortly before
being placed inside a scanner. The scanner detects radiation from the Iodine-
123 and constructs a 3D image of the area being scanned, which is used by
doctors to plan treatment options.

One of the main advantages of using Iodine-123 is that it has a relatively short
half-life of approximately 13.2 hours. This means that within 13.2 hours, one-half
of the Iodine-123 will be gone.

If a patient is given 400 microcuries of Iodine-123, how long will it take for the
radiation level to drop to a negligible 10 microcuries?

To answer this question, we need to be able to solve the exponential half-life
equation

In this section, we will learn techniques for solving equations like this, where the
variable is in the exponent, as well as equations involving logarithms. Once we
have established the basic techniques, we can return and solve questions like
this one.

10 = 400( )
t/13.21

2

Photo by Ken Treloar on Unsplash

https://unsplash.com/photos/pFoA5Pphb-Q


Techniques for Solving Exponential Equations

There are three main techniques for solving exponential equations. But before
solving any exponential equation we should first isolate the exponential
expression.

First Step: Isolate the Exponential

When working with more complicated exponential equations it is often
necessary to perform some algebraic simplifications first in order to isolate the
exponential expression.

As an example, let's examine the equation . Here the
exponential expression  has been multiplied by . If we divide both
sides of the equation by , then we will have isolated .

At this point we can choose an appropriate solving technique from the choices
discussed below. But this initial step of isolating the exponential is always an
essential first step.

Solving Method 1: The One-to-One Property of
Exponentials

One technique for solving an exponential equation is to take advantage of the
fact that all exponential functions are one-to-one. This means that

So if we can express both sides of an equations as powers of the same base,
then the one-to-one property tells us that the solution can be found by
comparing the exponents.

For example, suppose we want to solve . We can do so by writing both
sides as powers of  and equating the exponents.

500(1.2)x = 3000
(1.2)x 500
500 1.2x

500(1.2)x = 3000

1.2x = 6 Divide by 500

QUICK CHECK

1. What must be done to isolate the exponential in the equation
?

2. What must be done to isolate the exponential in the equation
 ?

2x + 6 = 54

4(3)x = 324

bN = bM  if and only if N = M

7x+3 = 49
7

7x+3 = 49

7x+3 = 72 Rewrite 49 = 72

x + 3 = 2 One-to-one property of exponentials

x = −1 −3 from both sides



Notice that this method only works when both sides can be written easily as
powers of the same base. If the equation had been just slightly different, say

, we would not have been able to solve it easily with this technique.

Solving Method 2: Rewrite as a Logarithmic Equation

Another useful technique is to rewrite an exponential equation as an equivalent
logarithmic equation using the definition of a logarithm.

For instance, if we start with the equation  then rewriting it as a
logarithm gives us the solution , which could be evaluated using the

change of base formula. The complete process would look like this:

We could have used  for the change of base formula and still arrived at the
correct answer, but  will be our default choice.

Solving Method #3: Take the Logarithm of Both Sides

Perhaps the most useful technique for solving an exponential equation is to take
the logarithm of both sides.

For example, suppose we start with  and take the natural log of both
sides.

While this might seem worse than the original equation, it is actually better
because we can now apply the power rule for logarithms and bring the  out
of the exponent.

7x+3 = 50

QUICK CHECK

Solve the exponential equation  by relating the bases.2x−1 = 8

bx = y⟺ logb(y) = x

3x = 10
x = log3 10

2 1
21

logb(x) = =
log(x)

log(b)

ln(x)

ln(b)

3x = 10
x = log3(10) Rewrite as a log equation

x = Change of base formula

x ≈ 2.0959 Evaluate

ln(10)

ln(3)

log
ln

QUICK CHECK

How would you solve  for ?5x = 200 x

3x = 10

3x = 10
ln(3x) = ln(10) Apply  ln to both sides

2 2
22

logb x
p = p logb(x)

x

ln(3x) = ln(10)

x ⋅ ln(3) = ln(10) Power rule for logs



The final step is to divide both sides by the number .

Notice that the last two lines are exactly the same as when we solved this earlier
with the change of base formula. One of the nice features of this technique is
that the change of base formula is built in, so you do not need to memorize it.

This method has an extra benefit if the base of the exponential in the equation
is .

If we start with the equation , as an example, then when taking the
natural log of both sides we are able to use the inverse property of logs 
rather than the power rule.

Notice how this simplifies the solving process, with the logarithm undoing the
exponential.

ln(3)

x ⋅ ln(3) = ln(10)

x = Divide by  ln(3)

x ≈ 2.0959 Evaluate

ln(10)

ln(3)

QUICK CHECK

Solve the same equation  using  instead of . Verify that your
decimal approximation is identical to the one found above.

3x = 10 log ln

e

e2x = 17
2 3

23

logb(b
x) = x

e2x = 17

ln(e2x) = ln 17 Apply  ln

2x = ln 17 Inverse property of logs

x = Divide by 2

x ≈ 1.4166 Evaluate

ln 17
2



Solve Applications Involving Exponential Equations

Half-Life

Now that we have established the basic techniques for solving exponential
equations, let's return to the section opener.

We want to know how long it will take for the radiation level to drop to 10
microcuries given an initial dose of 400 microcuries of Iodine-123. Since we know
that the half-life of Iodine-123 is 13.2 hours, we will use the half-life formula to
write our equation:

Our task is to solve this equation for . The first step is to isolate the
exponential.

Now we have to decide which method to use to solve the equation. Since it is not
obvious how to write both sides as powers of , and converting it to a logarithm

equation looks like it would be messy, let's take the natural logarithm of both
sides.

10 = 400( )
t/13.2

1
2

t

10 = 400( )
t/13.2

= ( )
t/13.2

Divide by 400

1
2

10

400

1
2

1
2

Photo by Ken Treloar on Unsplash
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This means that it will take 70.249 hours (roughly 3 days) for the radiation level
to drop from 400 to 10 microcuries.

Doubling Time

When solving real life problems, we usually will not be given the equation
directly. When this happens, we must construct it from the information available
and our knowledge of appropriate models.

For instance, suppose you have invested $5000 in an account earning 2%
interest compounded continuously. How long will it take for your investment to
double?

Since this question involves continuously compounded interest, we should use
the continuous growth model .

Making the substitutions  and  we see that the account
balance for any  is given by . We need to find  so that

.

= ( )
t/13.2

ln( ) = ln( )
t/13.2

Apply  ln

ln( ) = ln( ) Power rule for logs

= Divide by  ln( )

t = 13.2 Multiply by 13.2

t ≈ 70.249 Evaluate

10
400

1
2

10
400

1
2

10

400

t

13.2

1
2

ln( )10
400

ln( )1
2

t

13.2
1

2

ln( )10
400

ln( )1
2

A(t) = Pert

QUICK CHECK

Based on the information given, what are the values for ,  and ?P r A(t)

P = 5000 r = 0.02
t A(t) = 5000e0.02t t

A(t) = 10000



We have found that it will take close to 35 years for the investment to double if it
earns 2% continuously.

Stock Price for Google

Let's consider a similar example. When Google went public in 2004 you could by
a share of stock for $85 .

Just 2 years later, Google stock was trading at $387 per share. Assuming the
price increased exponentially, what was the continuous rate of growth?

In this case, we will also use . We know ,  and want to
find  so that .

Divide both sides by  to isolate the
exponential.

Apply the natural log  to both sides.

Use the inverse relationship .

Divide both sides by .

Use a calculator to find a decimal
approximation.

10000 = 5000e0.02t

2 = e0.02t Divide both sides by 5000

ln(2) = ln(e0.02t) Apply  ln  to both sides

ln(2) = 0.02t Use the inverse relationship  ln(ex) = x

= t Divide both sides by 0.02

t ≈ 34.657 Decimal approximation

ln(2)

0.02

QUICK CHECK

Rework the problem above assuming the initial deposit is just  dollars.
What is the doubling time? What does this tell you about doubling times in
general?

70

A(t) = Pert P = 85 t = 2
r A(2) = 387

387 = 85er(2)

= e2r387
85

85

ln( ) = ln(e2r)387
85

ln

ln( ) = 2r387
85

ln(ex) = x

= r
ln( )387

85

2

2

r ≈ 0.7579



This means that over the 2-year period from 2004 to 2006, Google's stock
increased at a continuous rate of 75.79%.

Notice that while the numbers were different, the process of solving this
equation was exactly the same as in the previous example. The only difference
being that we were solving for  instead of .

Radioactive Decay

In 1912, men working in an English quarry discovered what appeared to be a
prehistoric human skull. Piltdown Man, as the fossil was known, seemed to be a
clear indication that the human species had originated in England and was
considered by many to be the "missing link" in the history of human evolution.
But was it really?

The age of fossils is often determined by a process called carbon dating. Plants
absorb small amounts of the radioactive isotope carbon-14 from the
atmosphere. People and animals collect carbon-14 when they eat plants and
other animals. Once they die, however, the amount of carbon-14 begins to decay
exponentially with a half-life of about 5730 years. By comparing the amount of
carbon-14 in a fossil with the amount that would have been been present when
it was alive we can estimate the fossil's age.

Suppose that you were able to get a small fragment of the bone and extract
 grams of carbon-14 out of it. If there would have been 

grams present when Piltdown Man was alive, how old is this fossil?

To solve this we will use the half-life formula .

To determine the actual age of the Piltdown skull, we must use the half-life
formula with ,  and . Our task is to
solve for .

r t

9.7 × 10−15 1.05 × 10−14

f(t) = a( )
t/c1

2

QUICK CHECK

Use the information above to write the equation that we must solve. Keep
in mind that  is the initial value,  is the half-life, and  is the amount
after some period of time.

a c f(t)

a = 1.05 × 10−14 c = 5730 f(t) = 9.7 × 10−15

t



Divide both sides by

 to isolate the
exponential.

Apply the natural log  to
both sides.

Use the power rule for
logarithms.

Divide both sides by .

Multiply both sides by .

Use a calculator to find a
decimal approximation.

As this result suggests, Piltdown Man was an elaborate forgery. Someone had
cleverly stained and carved the bones to look old, though this fact was not
discovered for more than 40 years. And while the perpetrator has never been
determined, there are several suspects, including Sir Arthur Conan Doyle (author
of Sherlock Holmes) who lived nearby. In any case, Piltdown Man remains one of
the greatest unsolved scientific hoaxes of all time.

Nuclear Stockpile

During the 1950's, the number of active nuclear warheads in the U.S. arsenal
doubled every 2.27 years. If there were 369 nuclear warheads in 1950, when did
the U.S. stockpile exceed 30,000?

As we are given the doubling time, it makes sense to use the function
 with ,  and to try and find a  so that

.

9.7 × 10−15 = 1.05 × 10−14( )
t/57301

2

0.9238 = ( )
t/57301

2 1.05 × 10−14

ln(0.9238) = ln(( )t/5730)1
2

ln

ln(0.9238) = ln( )t
5730

1
2

=
ln(0.9238)

ln( )1
2

t
5730

ln( )1
2

t = 5730
ln(0.9238)

ln( )1
2

5730

t ≈ 655.21

f(t) = a(2)t/c a = 369 c = 2.27 t

f(t) = 30000

Photo by Paul Shambroom
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Divide both sides by  to isolate the
exponential.

Apply the natural log  to both sides.

Use the power rule for logarithms.

Divide both sides by .

Multiply both sides by .

Use a calculator to find a decimal
approximation.

So if the number of nuclear warheads since 1950 is given by ,
then our work suggests the United States had a stockpile of more than 30,000
warheads some time in the spring of 1964.

Population Growth

Suppose your neighbor starts a farm with  cute little rabbits. One hundred days
later, she is tending a herd of  rabbits. Assuming exponential growth, how
long until she has  rabbits at her farm?

30000 = 369(2)t/2.27

= 2t/2.2730000
369

369

ln( ) = ln(2t/2.27)30000
369

ln

ln( ) = ln(2)30000
369

t
2.27

=
ln( )30000

369

ln(2)
t

2.27

ln(2)

t = 2.27
ln( )30000

369

ln(2)

2.27

t ≈ 14.40

f(t) = 369(2)t/2.27

QUICK CHECK

If nuclear arms production had continued at that rate, how many
warheads would there have been in 2010?

4
28

500

Photo by Andreas Lischka from Pixabay
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Before we can answer this question, we need to find the continuous rate of
growth by solving  for .

Divide both sides by  to isolate the exponential.

Apply the natural log  to both sides.

Use the inverse relationship .

Divide both sides by .

Use a calculator to find a decimal approximation.

So the number of bunnies can be modeled by .

Since the number of bunnies is modeled by , to figure out when

the population is at 500 we should solve the equation  for .

Divide both sides by  to isolate the
exponential.

Apply the natural log  to both sides.

Use the inverse relationship .

Divide both sides by .

Use a calculator to find a decimal
approximation.

We conclude that in roughly 250 days the farmer will have 500 rabbits.

28 = 4ek⋅100 k

28 = 4ek⋅100

= e100k28
4

4

ln 7 = ln(e100k) ln

ln 7 = 100k ln(ex) = x

= kln 7
100

100

k ≈ 0.0195

f(t) = 4e0.0195 t

QUICK CHECK

How can we determine when there will be 500 rabbits?

f(t) = 4e0.0195 t

500 = 4e0.0195 t t

500 = 4e0.0195 t

= e0.0195t500
4

4

ln 125 = ln(e0.0195t) ln

ln 125 = 0.0195t ln(ex) = x

= t
ln 125
0.0195

0.0195

t ≈ 247.6

QUICK CHECK

How would the equation have been different if we wanted to know when
the farmer would have 2000 rabbits?



Techniques for Solving Logarithmic
Equations

While our primary focus has been solving exponential equations that arise from
different applications, we should also discuss solving logarithmic equations.

Just as with exponential equations, it's usually best to try and simplify the
equation first.

Use Log Properties

If an equation contains multiple logarithms, we should start by using log
properties to condense those into a single logarithm, if possible.

For instance, the left side of the equation  could be
condensed using the quotient rule.

At this point we can choose an appropriate solving technique from the choices
discussed below. But this initial step of trying to condense multiple logarithms is
always something we should look for first.

Solving Method 1: The One-to-One Property of Logarithms

Since logarithms are one-to-one functions, if we know that two logs with the
same base are equal then their inputs must also be equal.

In other words, as long as both sides are written as single logarithms with the
same base, then the logarithms themselves can be ignored.

For example, solving the equation  is equivalent to

solving  as we see below.

log(x + 39) − log(4x) = 1

log(x + 39) − log(4x) = 1

log( ) = 1 Quotient rule for logs
x + 39

4x

QUICK CHECK

1. Use the product property to write the left side of the equation
 as a single logarithm.

2. Which log property could you use to simplify the equation
?

ln 8 + lnx = 7

log(x3) = 12

logb(N) = logb(M) if and only if N = M

log2(x2 + 1) = log2(26)
x2 + 1 = 26

log2(x2 + 1) = log2(26)

x2 + 1 = 26 One-to-One Property

x2 = 25 Subtract 1

x = ±5 Square root both sides



Solving Method 2: Rewrite as an Exponential Equation

Another solving technique is to isolate the logarithmic expression and rewrite
the equation as an equivalent exponential using the definition of a logarithm.

Consider the equation . If we divide both sides by  then the
logarithm will be isolated and we can solve by rewriting it as an exponential
equation.

This is useful anytime the equation can be written as a single logarithm, even if it
doesn't start out that way.

Solving Method 3: Exponentiate Both Sides

Our final method is to exponentiate both sides of the equation using the base of
the logarithm.

To exponentiate both sides of an equation means to turn each side into an
exponent of the base . Once that has been done we can take advantage of the
inverse property between logs and exponentials. 

We will illustrate the process using the equation .

QUICK CHECK

1. Solve the equation .

2. Solve the equation .

log5(x − 3) = log5(9)

ln √x = ln(4)

bx = y⟺ logb(y) = x

4 log3(x − 2) = 16 4

4 log3(x − 2) = 16

log3(x − 2) = 4 Divide by 4

34 = x − 2 Rewrite as an exponential equation

81 + 2 = x Add 2

x = 83 Simplify

QUICK CHECK

What should be done to isolate the logarithm in the equation
?6 + log(2x) = 9

b
2 4

24

blogb x = xlog2 x = 6

log2 x = 6

2log2 x = 26 Exponentiate base 2

x = 26 Inverse property

x = 64 Evaluate



Earlier we would have solved this by rewriting it as the exponential equation
 and simplifying to see that , and rewriting is probably the

preferred method. We introduce the idea of exponentiation here to reemphasize
the inverse relationship between exponentials and logarithms. Not only are they
inverse functions, but it can sometimes be useful to think of exponentiation and
taking the logarithm as inverse operations. Exponentiating can then be viewed
as just another operation we can use when we solve equations by reversing the
order of operations.

Find Inverses

As we learned earlier, we can find an inverse by listing the operations performed
by the function and doing the opposite operations in the reverse order. Viewing
exponentiation and logarithms as opposite operations allows us to find the
inverses of more complicated exponential and logarithmic functions.

For instance, the function  does three things to each input value.
It adds , then exponentiates with a base of , and lastly multiplies by . It's
inverse should divide by , then apply the base  logarithm, and finally subtract

. We summarize this in the table below.

Operations Done by
the Function

Operations Done by
the Inverse

1. Add 1. Divide by 

2. Exponentiate with a
base of 

2. Apply the base 
logarithm

3. Multiply by 3. Subtract 

Now we take the operations listed and build the inverse function  as follows:

1. Start with a variable:

2. Divide by :

3. Apply the base  logarithm:

4. Subtract  :

5. Write as a function:

x = 26 x = 64

QUICK CHECK

Exponentiate both sides of the equation . Simplify if possible.ln(x) = 4

f(x) = 5(3)x+2

2 3 5
5 3

2

2 5

3
3

5 2

f−1

x

5 x
5

3 log3( )
x
5

2 log3( )− 2x
5

f−1(x) = log3( )− 2x
5



Let's look at another example. This time we will find the inverse of
. Start by listing the operations of the function in the proper

order and then list which operations its inverse should do.

Operations Done by
the Function

Operations Done by
the Inverse

1. Multiply by 1. Apply the base 
exponential

2. Subtract 2. Add 

3. Apply the base
logarithm

3. Divide by 

Once we know the inverse operations and their order we can build up the
inverse function.

1. Start with a variable:

2. Apply the base  exponential:

3. Add :

4. Divide by :

5. Write as a function:

Looking Ahead

The key idea from this section is that since exponential and logarithmic
functions are inverses functions, we can also use them as inverse operations to
solve equations and applications.

QUICK CHECK

Identify the order of operations of the function . Then
find the inverse function .

f(x) = 500(2)x/27

f −1

g(t) = log2(3t − 7)

3 2

7 7

2 3

t

2 2t

7 2t + 7

3 2t+7
3

g−1(t) = 2t+7
3



4.1 Addition and Subtraction of Functions

Introduction

Not too long ago, mobile phones were only used for making phone calls, nothing
else was possible. Today's smart phones, however, combine the functionality of
several different devices into one convenient package.

In a similar way, mathematical functions can be combined together to create
new functions. In this section we will focus on combining two or more functions
through the algebraic operations of addition and subtraction.

Combining Functions by Addition

We begin by summing the outputs of two functions. This is done with normal
addition since the outputs of a function are real numbers. For instance, if

 and , then

In the table below, use the given values of  and  to find values for
.

f(1)= −5 g(1)= 19

f(1) + g(1) = −5 + 19 = 14

f(x) g(x)
(f + g)(x)

Photo by Pexels
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Taking a closer look at these results you might notice that each  creates a
single  value.

f(x) g(x)
-5 19
13 -7
21 4
8 0
-2 32

-5 + 19 = 
13 + -7 = 
21 + 4 = 

8 + 0 = 
-2 + 32 = 

f(x) + g(x)x
1
2
3
4
5

14
6
25
8
30

In other words, the values of  are a function of . This is only natural
since  and  are both functions of .

Adding Functions Graphically

Now let's take a look at what happens when you add the outputs of two
functions graphically.

As you chanage  in the interactive figure below the value of  will be
recorded, forming a new graph. Is this new graph a function? Does it look
familiar? Make a note of your observations before continuing.

To use the interactive figure visit https://www.geogebra.org/m/dPa7vBG3

x f(x) g(x) f(x) + g(x)

1 −5 19 −5 + 19 = 14

2 13 −7

3 21 4

4 8 0

5 −2 32

x
f(x) + g(x)

f(x) + g(x) x
f g x

x f(x) + g(x)

https://www.geogebra.org/m/dPa7vBG3
https://www.geogebra.org/m/dPa7vBG3
https://www.geogebra.org/m/dPa7vBG3


There are two things you should notice about the resulting graph (shown here in
gray).

First, it passes the vertical line test, which confirms our earlier conclusion that
 is a new function of . To emphasize this, from now on we will use the

following notation

when referring to the sum of two functions.

Second, the graph of  retains some of the properties of both  and
. It has dips and bumps like , but it also has the upward trend of .

Adding two functions always creates a new function that blends together the
behaviors of the two original functions.

The Domain of 

Let's now suppose that both  and  are undefined over some regions, as
in the figure below. How does this affect  ?

f + g x

(f + g)(x) = f(x) + g(x)

(f + g)(x) f(x)
g(x) g(x) f(x)

(f + g)(x)

f(x) g(x)
(f + g)(x)



To use the interactive figure visit https://www.geogebra.org/m/FOsUyxCc

In working with the interactive figure above you probably realized that
 is only defined if both  and  are defined. If either is

undefined, then  is undefined as well.

In this particular example,  is defined on the intervals  and  while  is
defined on  and . The function  is only defined in the regions
where those intervals overlap.

The domain of  is always the intersection of the domain of  and the
domain of .

(f + g)(x) f(x) g(x)
(f + g)(x)

f [1, 5] [6, 8] g
[1, 2] [3, 8] f + g

f + g f
g

https://www.geogebra.org/m/FOsUyxCc
https://www.geogebra.org/m/FOsUyxCc
https://www.geogebra.org/m/FOsUyxCc


Equations of 

If the functions  and  are defined by equations, then the combined function
 is the sum of those two equations. Of course, this rule only makes sense

when  and  are both defined.

As an example, consider the two functions  and . The
equation for their sum is

Since the square root is not defined for negative values, the domain of 
must be .

With an equation we evaluate  by simply replacing  with the appropriate
value.

If we want to evaluate  for the function above, for example, we
replace  with  and simplify.

On the other hand, we cannot evaluate  since  is not in the
domain of this particular function.

QUICK CHECK

1. Suppose the domain of  is {1, 2, 3, 4, 5} and the domain of  is {2, 4,
6, 8, 10}. What is the domain of ?

2. If the domains of the functions  and  are  and ,
respectively, what is the domain of ?

f g
f + g

p q x < 2 x ≥ −10
p + q

(f + g)(x)

f g
f + g

f g

f(x) = √x g(x) = 2x

(f + g)(x) = √x + 2x

f + g
x ≥ 0

f + g x

(f + g)(9)
x 9

(f + g)(9) = √9 + 2(9)

= 3 + 18
= 21

(f + g)(−4) x = −4

QUICK CHECK

Suppose  and .

1. Find the equation for .

2. What is the domain of the function ?

3. What is the value of ?

f(x) = x3 g(x) = 1
x

f + g

f + g

(f + g)(2)



Combining Functions by Subtraction

Up to this point we have focused on adding functions. Predictably, subtracting
functions yields similar results.

Below values for two functions  and  are given. Use subtraction to
complete the table values for .

As with addition, the essential observation here is that if  and  are both
functions of , then their difference  is also a function of . Furthermore,

 is evaluated by

and its domain is the intersection of the domains of  and .

Take, for instance, the functions  and . Their difference

is the new function

Since the domain of  does not include , we cannot include

 in the domain of .

f(x) g(x)
(f − g)(x)

x f(x) g(x) f(x) − g(x)

1 2 8 2 − 8 = −6

2 29 −1

3 13 −22

4 −1 9

5 0 7

f g
x f − g x

(f − g)(x)

(f − g)(x) = f(x) − g(x)

f g

f(x) = 1
x+6 g(x) = x + 1

(f − g)(x) = − (x + 1)

= − x − 1

1

x + 6
1

x + 6

f(x) = 1
x+6 x = −6

x = −6 (f − g)(x)

QUICK CHECK

Suppose , which has a domain of , and ,
which is defined for all real numbers.

1. Determine the equation for  and its domain.

2. Evaluate 

3. Evaluate 

f(x) = log(x) x > 0 g(x) = x3

(f − g)(x)

(f − g)(2)

(f − g)(−2)



Symmetry

As we saw earlier, the function  blends together the behaviors of  and .
However, since  and  can have very different maximums, minimums,
intercepts, etc., predicting the exact behavior of  is difficult.

One behavior that we can usually predict is the symmetry of . If  and  are
both even functions (ie. symmetric across the y-axis), then so is . Likewise,
if  and  are odd functions (ie. symmetric around the origin), then  is also
an odd function.

You may wish to verify this with the interactive figure below. The graphs of two
even functions  and  are shown. Changing  and/or
pressing Play will draw the graph of .

You are free to enter any equations you want for  and . You might want to also

try two odd functions, like  and , or some other combinations before
continuing.

To use the interactive figure visit https://www.geogebra.org/m/ghdHeX19

The same symmetry rules apply for . If  and  are both even functions (ie.
symmetric across the y-axis), then so is . Likewise, if  and  are odd
functions (ie. symmetric around the origin), then  is also odd.

f + g f g
f g

f + g

f + g f g
f + g

f g f + g

f(x) = 3 − x2 g(x) = x2/3 x

f + g

f g

x3 x1/3

f − g f g
f − g f g

f − g

QUICK CHECK

Without graphing, decide if the following functions have even or odd
symmetry.

1. 

2. 

3. 

f(x) = x4 − x2

g(x) = x3 + ln(x)

h(x) = x + 1
x

https://www.geogebra.org/m/ghdHeX19
https://www.geogebra.org/m/ghdHeX19
https://www.geogebra.org/m/ghdHeX19


Applications

It is impossible to cover every possible application of adding and subtracting
functions, but we'll look at a few just to illustrate the variety.

Calculating Profit and Deductions

Imagine that one day you brought a homemade cupcake to work and a friend
offered to buy it from you for . If the ingredients cost , then you
earned a profit of .

Recognizing that made-from-scratch-daily cupcakes could be a commercial
success, you throw caution to the wind and open your own bakery.

After several days and nights of baking, you discover that the ingredient cost for
 cupcakes is given by the function . And since you are

charging  per cupcake, your revenue is given by .

Your profit is the difference of these two functions. That is to say,
.

Now that you are running a business and earning a profit, you need to calculate
how much of your weekly profits  should be sent to the federal government for
income tax and Social Security. Since different income levels pay different tax
rates, federal income tax is a piecewise function. Let's assume that

$2.50 $1.00
$1.50

x C(x) = 0.65x + 0.85
x

$2.50 R(x) = 2.5x

P(x) = (R − C)(x)

QUICK CHECK

What is the profit if you sell 500 cupcakes?

P

Photo by Hanh Nguyen on Unsplash

https://unsplash.com/photos/j6DH45Bflho


for single taxpayers.

The Social Security deduction is fixed percent so it is a simpler function. We'll say
that for self-employed individuals it is , or  of your weekly
profit.

If your weekly profit was  dollars, then your total federal deductions are

Catenary Curves

Another useful, but less taxing, application comes from adding an exponential
growth function, like , with an exponential decay function such as

. What would the graph of such a function look like?

The figure below lets you discover the answer. Change  and watch as the graph
of  is drawn. How would you describe its shape?

To use the interactive figure visit https://www.geogebra.org/m/e6hPPmqS

While this shape looks like a parabola, it is actually a different curve known as a
catenary.

T (P) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 $0 ≤ P ≤ $42
0.1(P − 42) $42 ≤ P ≤ $214
17.2 + 0.15(P − 214) $214 ≤ P ≤ $739
95.95 + 0.25(P − 739) $739 ≤ P ≤ $1732

S(P) = 0.153P 15.3

P = 600

T (600) + S(600) = 17.2 + 0.15(600 − 214) + 0.153(600)

= 71.5 + 91.80
= $166.90

QUICK CHECK

Suppose your weekly profit doubles from  to . How
much are your new federal deductions?

P = 600 P = 1200

f(x) = ex

g(x) = e−x

x
(f + g)(x)

https://www.geogebra.org/m/e6hPPmqS
https://www.geogebra.org/m/e6hPPmqS
https://www.geogebra.org/m/e6hPPmqS


Photo by Cecil W.

Stoughton

A catenary is the shape formed by any chain hanging freely under its own weight
whose ends are held in place. If you have ever held a necklace or a string loosely
between your hands, then you have made a catenary curve.

Upside down, or "inverted" catenary curves are frequently used in the
construction of bridges and arches because of the way they distribute the load.
The Gateway Arch in St. Louis, Missouri is a famous example of an inverted
catenary arch.

Polynomials

Perhaps the most important consequence of adding and subtracting functions is
the creation of a new category of functions known as polynomials.

A polynomial is a function that can be written as a sum or difference of power
functions whose powers are non-negative integers such as .

For example, the polynomial  is a sum of the four

power functions ,   ,      and   .

Each power function is called a term of the polynomial. The highest power is
called the degree of the polynomial, and the coefficient of that term is called
the leading coefficient. The term without an  is referred to as the constant
term.

p (x )=5x 3 + 7x 2 - 4 x + 8

terms

leading
coefficient

degree constant
term

Polynomials cannot contain terms like  or  or , since the powers 
and  are not integers and  is negative. Neither can a polynomial include
any exponential or logarithmic terms like ,  and .

2 5
25

0, 1, 2, 3, …

p(x) = 5x3 + 7x2 − 4x + 8
5x3 7x2 −4x 8

x

x5/2 x1.28 x−3 5/2
1.28 −3

2x ex lnx

https://npgallery.nps.gov/AssetDetail/e785a7052f4e4d7c9d86259df9edc062
https://npgallery.nps.gov/AssetDetail/e785a7052f4e4d7c9d86259df9edc062


Graphs of Polynomials

The graphs of polynomials are very reminiscent of roller coasters. We will
explore their graphs is greater detail in Chapter 5. For now, use the interactive
figure below to familiarize yourself with some of the possible shapes. You are
free to show or hide the individual power functions and to change their
coefficients.

To use the interactive figure visit https://www.geogebra.org/m/IzqmS4xo

Looking Ahead

In this section we have seen how combining a few simple functions through the
operations of function addition and subtraction can create new functions that
display a wide variety of behaviors.

QUICK CHECK

Decide if the following are polynomials or not. If it not, explain why not. If
it is a polynomial, state its degree.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

f(x) = x2 + 1

g(x) = 2x + 3x − 7

h(x) = 4x3.5 + 2x−3/4 + 6x

p(x) = x12 − x5 + 9x − 23

q(x) = (x + 3)2

r(x) = 1
x−5

s(x) = √x + 4

http://chapter-5/5.1
https://www.geogebra.org/m/IzqmS4xo
https://www.geogebra.org/m/IzqmS4xo
https://www.geogebra.org/m/IzqmS4xo


Polynomial functions, in particular, are prized for both the simplicity of their
equations and the complexity of their behavior. That duality makes them
attractive models for data and processes that change from increasing to
decreasing multiple times.

Since we've just covered function addition and subtraction, you can probably
guess what is coming next: multiplication and division.



4.2 Multiplication and Division of
Functions

Introduction

The strong winds of large tropical storms, like hurricane Katrina or super storm
Sandy, can push sea water toward the shore causing severe flooding. These
"storm surges" are often a greater threat to life and property than the hurricane
itself. The surge after Katrina reached 28 feet above flood level.

In this section we will see a simplified model for storm surges that results from
multiplying a power function by an exponential decay function.

Combining Functions by Multiplication

In the last section we saw that if  and  are both functions, then we can form
new functions by taking their sum  or their difference . The product of
two functions  is also a function and can be evaluated using the rule

In the table below, use the given values of  and  to find values for
.

f g
f + g f − g

fg

(fg)(x) = f(x)g(x)

f(x) g(x)
(fg)(x)

Photo by Jerry Coli from Pixabay

https://pixabay.com/images/id-3735936/


Notice that each  creates only one  value, which means that multiplying
two functions always creates a new function.

The Domain of 

As with the sum and difference, the domain of  is the intersection of the
domains of  and .

For example, if  and , then

Since  is only defined for positive values of , the product  is only
defined for  as well.

Simplifying 

Sometimes we can tell what type of function the product  will be by
recognizing what type of function  and  are.

When  and  are Power Functions

Suppose you take two power functions, like  and . Their
product is also a power function

x f(x) g(x) (fg)(x) = f(x)g(x)

1 4 9 (4)(9) = 36

2 3 −5

3 1 14

4 −8 −3

5 −32 0

x (fg)(x)

(fg)(x)

fg
f g

f(x) = ln(x) g(x) = 4 − x2

(fg)(x) = ln(x)(4 − x2)

= 4 ln(x) − x2 ln(x)

f(x) = ln(x) x fg
x > 0

QUICK CHECK

1. Suppose  and . Find the equation for  and

state its domain.

2. If the domain of  is  and the domain of  is , what is the
domain of ?

f(x) = √x + 4 g(x) = 1
x

fg

f [−10, 6) g (4, 9]
fg

(fg)(x)

fg
f g

f g

f(x) = x1.3 g(x) = x2.5

(fg)(x) = x1.3x2.5

= x3.8



When  and  are Exponential Functions

A similar thing holds if  and  are both exponential functions. As an example,
consider  and . The equation for  is

which is also an exponential function.

When  and  are Polynomials

Lastly, the product of two polynomials is still a polynomial. Using 
and , for instance, gives

Graphs of 

We can also gain some insight into the graph of  by inspecting the graphs
of  and .

Of particular interest is the fact that  inherits the x-intercepts from both
 and .

This can be explored in the interactive figure below. The  and
 are shown, though you can change either one.

To use the interactive figure visit https://www.geogebra.org/m/ccAPEyMG

It's worth noting that the product  only exists for  since the domain of
the logarithm is .

Applications

At the start of this section we mentioned the storm surge following a tropical
storm like a hurricane. It's now time that we looked at this shape and tried to
find a function with a similar graph.

f g

f g

f(x) = 2x g(x) = 3x fg

(fg)(x) = 2x3x

= 6x

f g

f(x) = 3x + 1
g(x) = x + 4

(fg)(x) = (3x + 1)(x + 4)

= 3x2 + 13x + 4

(fg)(x)

(fg)(x)
f(x) g(x)

(fg)(x)
f(x) g(x)

f(x) = 4 − x2

ln(x)

fg x > 0
x > 0

https://www.geogebra.org/m/ccAPEyMG
https://www.geogebra.org/m/ccAPEyMG
https://www.geogebra.org/m/ccAPEyMG


The chart below from the United States Geological Survey shows the storm surge
for Hurricane Rita in 2005. Notice how the water level (in blue) increases quickly,
and then recedes at a slower rate.

One way to create a function that grows quickly and then decays is to multiply
an increasing power function by an exponential decay function.

In the figure below, the graphs of  and  are shown. The

graph of  will be drawn as you change the value of .

To use the interactive figure visit https://www.geogebra.org/m/AfMnn6k3

As you have just seen, the graph of the function  is similar in
some ways to storm surge flooding. In fact, functions of this type, where an
increasing power function is multiplied by an exponential decay function, are
often called surge functions. All surge functions have the form

where  and . The rapid rise, or surge, is caused by the power function
and the eventual decay is due to the exponential function.

f(x) = 10x2 g(x) = e−x

(fg)(x) = 10x2e−x x

f(x) = 10x2e−x

f(x) = axpe−bx

p > 0 b > 0

https://www.geogebra.org/m/AfMnn6k3
https://www.geogebra.org/m/AfMnn6k3
https://www.geogebra.org/m/AfMnn6k3


Surge functions can be found in a number of areas. For instance, the level of
glucose in your blood, the electrical current in a toy car, the number of Tweets
about a world news event, or even the number of people trying to figure out
how to watch the Superbowl online can display surge-like behavior.

Unfortunately, fitting a surge function to real data is beyond the scope of this
book, but it's existence should illustrate the utility of creating new functions by
multiplication. Division of functions is also useful, and that is where we turn our
attention next.

Combining Functions by Division

Since we have worked with addition, subtraction and multiplication of functions,
it should come as no surprise that dividing one function by another creates a
new function. The quotient of two functions  and  is defined as

provided that .

Simplifying 

If  and  are either both power functions or both exponential functions then
the rules of exponents allow us to simplify their quotients.

You might recall that

where  and  are any real numbers and . In the present context, this
shows that the quotient of any two power functions is just another power
function, and that  must be excluded from the domain of .

Another rule of exponents states that

where  and  are any positive real numbers. This rule shows that the quotient
of any two exponential functions is still an exponential function. And since  and

 are positive, there are no restrictions on the domain of .

f g

( ) (x) =
f

g

f(x)

g(x)

g(x) ≠ 0

( ) (x)
f

g

f g

= xm−nxm

xn

m n x ≠ 0

x = 0 xm−n

= ( )
xax

bx
a

b

a b
a

b ( )
x

a

b

QUICK CHECK

1. If  and , find the equation for .

2. If  and , find the equation for 

f(x) = x2 g(x) = x5 ( ) (x)f

g

f(x) = 2x g(x) = 5x ( ) (x)f

g

http://localhost:1313/img/chapter-4/surge_data_2.png
http://localhost:1313/img/chapter-4/surge_data_3.png
http://localhost:1313/img/chapter-4/surge_data_4.png
http://localhost:1313/img/chapter-4/surge_data_5.png


Rational Functions

As we have just seen, division of power functions and division of exponential
functions is simply an application of the rules of exponents.

In those cases division does not generate a new category of function--the
quotient of two power functions is just another power function and the quotient
of two exponentials is another exponential function.

However, dividing one polynomial by another polynomial does create a new
family of functions, known as rational functions. A rational function is any
function that can be written in the form

where  and  are both polynomials and .

Graphs of Rational Functions

The graphs of rational functions can have very interesting and complex
behaviors. The graphs below should give you an idea of the variety we might
encounter.

In Chapter 5 we will examine the properties of rational functions. One tool that
will help us do that is being able to simplify the equation by cancelling common
terms, if possible, or by polynomial division.

f(x) =
n(x)

d(x)

n(x) d(x) d(x) ≠ 0

QUICK CHECK

Which of the following are rational functions?

1. 

2. 

3. 

4. 

f(x) = x2+1
x−3

g(x) = 2x+3
3x−7

h(x) = 6x2 + 2x

p(x) = 2
x5−9x2−3

http://chapter-5/5.5


Simplifying Rational Functions by Cancellation

Sometimes it is possible to simplify a rational function by canceling common
factors. Whenever we cancel factors, we should keep in mind the domain of the
original rational function.

For instance, the rational function  can be simplified by canceling

the  that all terms have in common.

But we must remember to specify that this only holds for , since  is not

included in the domain of . The proper way to write it is

Without the condition that , this would be a false statement.

Simplify Rational Functions by Long Division

When no common factors can be found, a rational function can be simplified by
division, but only if the polynomial in the numerator has a degree that is higher
than or equal to the degree of the denominator.

For instance,  and  can be simplified by division while

 cannot.

f(x) = x2−3x
x

x

f(x) =

= −

= x − 3

x2 − 3x

x

x2

x

3x

x

x ≠ 0 0

f(x) = x2−3x
x

f(x) = = x − 3, x ≠ 0
x2 − 3x

x

x ≠ 0

QUICK CHECK

1. What is the domain of the rational function ?

2. Simplify the rational function .

3. Simplify the rational function  by first factoring the

numerator.

f(x) =
(x−3)(x−4)

x−3

f(x) =
(x−3)(x−4)

x−3

f(x) = x2+3x+2
x+2

f(x) = x2−3x
x−1

f(x) = x4−6x

x4+8

g(x) = 2x+4

x3−5



You'll recall that dividing one whole number by a whole number divisor results in
a quotient and a remainder. As an example,

were  is the divisor,  is the quotient and  is the remainder.

Polynomial division follows the identical pattern:

We refer to the function  as the divisor,  as the quotient and  as
the remainder.

The traditional method for dividing one polynomial by another is called
polynomial long division, and works much like long division of numbers. The
figure below will walk you through the algorithm for dividing  by

. Use the controls in the lower left corner to start or pause the process or
skip directly to any step.

QUICK CHECK

1. Can we use division to simplify ?

2. Can we use division to simplify ?

f(x) = 7x5−2x3+11
x2+3x−1

f(x) = x2+1

x4+3x−1

= 2 +
15

7

1

7

7 2 1

= q(x) +
n(x)

d(x)

r(x)

d(x)

d(x) q(x) r(x)

QUICK CHECK

Suppose . Identify the divisor, quotient and

remainder.

= 3x + 6 +3x2+1
x−2

13
x−2

3x2 + 5x − 2
x + 1



To use the interactive figure visit https://www.geogebra.org/m/kBIVwuSv

After performing the division we need to identify the divisor , the quotient
 and the remainder .

Now we can simplify  using the  pattern. The final

result is

Now that you have seen an example, let's walk through another division
problem together. This time we will divide  by .

1. Write the problem as a long division.

2. What multiplies  to create ?

3. Perform the first step of the division.

4. What is the next number that should go above the division symbol?

5. Perform the rest of the division.

6. Now identify the quotient and remainder.

d(x)
q(x) r(x)

3x2+5x−2
x+1 = q(x) +

n(x)

d(x)

r(x)

d(x)

4x2 − 5 x + 2

x 4x2

https://www.geogebra.org/m/kBIVwuSv
https://www.geogebra.org/m/kBIVwuSv
https://www.geogebra.org/m/kBIVwuSv


Synthetic Division

When the divisor is simple, something of the form , such as  or ,
then the long division process can be greatly simplified. This simplified division
process is called synthetic division. Synthetic division is simpler because we
only work with the number  from the divisor and the coefficients of the
numerator.

For instance, if the divisor is  then , if the divisor is  then
.

If the numerator is  then we work with the coefficients ,
including a  for any term that is missing.

Whereas the long division algorithm required multiplication and then
subtraction, with synthetic division we multiply and then add.

Earlier we used long division to divide  by . Here we perform
the same calculation with synthetic division. Use the controls in the lower left
corner to start or pause the process or skip directly to any step.

To use the interactive figure visit https://www.geogebra.org/m/kNm8cmKM

After identifying the divisor , quotient  and remainder .

we can rewrite  as

x − c x − 3 x − 5

c

x − 6 c = 6 x + 8
c = −8

7x3 + 5x − 9 7, 0, 5, −9
0

QUICK CHECK

1. What is  if the divisor is ?

2. Can we use synthetic division if the divisor is ?

3. What are the coefficients of ?

c x + 4

x2 − 5

−2x5 + x3 − 7x

3x2 + 5x − 2 x + 1

d(x) q(x) r(x)

3x2+5x−2
x+1

https://www.geogebra.org/m/kNm8cmKM
https://www.geogebra.org/m/kNm8cmKM
https://www.geogebra.org/m/kNm8cmKM


using the  pattern.

Next we will divide  by . Fill in the steps as prompted
below.

1. What are the coefficients of the numerator?

2. What is ?

3. Write as a synthetic division.

4. Complete the synthetic division.

5. Identify the quotient and remainder.

6. Use the quotient and remainder to simplify .

Looking Ahead

We now know how to combine functions using the four basic operations of
addition, subtraction, multiplication and division. We've also seen how
complicated behaviors, like those of polynomial and rational functions, can arise
by combining simple functions.

We will return to polynomial and rational functions in the following chapter, but
first we must investigate another way to combine functions.

= q(x) +
n(x)

d(x)

r(x)

d(x)

2x3 + 7x2 − 2x − 12 x + 3

c

2x3+7x2−2x−12
x+3

http://localhost:1313/chapter-5/
http://localhost:1313/4.3


4.3 Composition of Functions

Introduction

Washing laundry usually involves two machines: a washer and a dryer. Once the
wash cycle is over you have to transfer the load over to the dryer.

What does this have to do with math? Well, there is a new way to combine
functions called composition. Composition is completely different than
addition, subtraction, multiplication or division of functions. Fortunately, the
concept behind composition is almost exactly the same as washing laundry.

Composition of Functions

Let's diagram the laundry experience. You start by putting a load of dirty clothes
and linens into a washing machine. When the washing cycle is over your laundry
is not only clean, but wet as well. To remedy this you transfer the clean, wet
clothes into the dryer and turn it on. Eventually you have what you wanted:
clean and dry clothes.

Dirty Laundry Clean & Wet Laundry Clean & Dry Laundry

 

If we overlay the laundry diagram with function notation you can begin to see
what function composition is.

Image by Steve Buissinne from Pixabay

https://pixabay.com/images/id-2668472/


Dirty Laundry Clean & Wet Laundry Clean & Dry Laundry

 

xx gg((xx)) ff ff((gg((xx))))gg

When we take the output of one function (like clean, wet laundry from the
washing machine) and input it into another function (like the dryer), the result
(clean, dry laundry) is a composition of the two functions.

Suppose, for instance, that  adds 2 to any number, and that  multiplies any
input by 10. In other words,  and .

If we insert  into  then  comes out. Now take  and use it as the input to
.

Dirty Laundry Clean & Wet Laundry Clean & Dry Laundry

 

44 66 ff 6060gg

The result is the composition .

g f
g(x) = x + 2 f(x) = 10x

x = 4 g 6 6
f

f(g(4)) = 60

QUICK CHECK

Suppose the example above had started with  instead. What would
be the result of the composition?

x = 1



Understand Composition of Functions

We encountered composition earlier in this chapter, though we did not call it
composition at the time.

Recall that the Social Security deduction for someone who is self-employed was
given by the function , where  are the profits earned.

But the profit depends on how many items are sold. In the cupcake example, for
instance,  where  is the number of cupcakes sold.

If you sold  cupcakes you would need to first calculate  before
using that value as the input to  to find the Social Security deduction. This
is composition since you are using the output of one function as the input to a
second function.

Composition Notation

Since composition is a new way of combining functions, it needs its own symbol.
The symbol for composition is a small open circle  . If  and  are functions, the
composition of  with  is the function given by

For example, using  and  as our two functions, we can
find  as follows:

S(P) = 0.153P P

P(x) = 1.85x − 0.85
x

x

1000 P(1000)
S(P)

QUICK CHECK

Using the functions above, find the Social Security deduction on the
profits from selling  cupcakes.1000

∘ f g
f g

(f ∘ g)(x) = f(g(x))

f(x) = 2x3 g(x) = x+3
2

(f ∘ g)(1)

Photo by Hanh Nguyen on Unsplash

http://chapter-4/4.1#calculating-profit-and-deductions
https://unsplash.com/photos/j6DH45Bflho


( f   g)(1)  = f (g(1))

= f (2)
=2 (2) 3

Use definition of composition.

Insert 1 into g(x).

Evaluate             = 2.

Insert 2 into f(x).
Evaluate 2(2)3 = 16. =16

= f    ))1 + 3
2

1 + 3
2

Notice that the output of the  function was used as the input of the  function.

Order of Composition

You are probably aware that some operations, like addition and multiplication,
are commutative, meaning they can be done in any order.

With other operations, like subtraction and division, the order makes a big
difference in the result.

This begs the question: Is the operation of composition commutative? Can we
compose functions in any order we like, or is the order important?

Our laundry analogy suggests that composition may not be commutative, since
drying clothes before washing them is not the same as first washing and then
drying.

But the analogy is merely a suggestion. To get real evidence we need to look at
some functions and compare  with .

Let's choose two simple functions to work with  and .

First we compute  and we'll compare that value with .

 

( f   g)(5)  = f (g(5))

= f (25)
= (25)+ 4

Use definition of composition.
Insert 5 into g(x).
Evaluate (5)2=25.
Insert 25 into f(x).
Evaluate 25+4=29. 

= f ((5)2)

= 29

If we compare this with 

g f

QUICK CHECK

Using the same functions as above, find .(f ∘ g)(7)

(f ∘ g)(x) (g ∘ f)(x)

f(x) = x + 4 g(x) = x2

(f ∘ g)(5) (g ∘ f)(5)

(g ∘ f)(5)



( g    f )(5)  = g( f (5)) Use definition of composition.
Insert 5 into f(x).
Evaluate 5+4=9.
Insert 9 into g(x).
Evaluate (9)2=81.
 

= 81
= (9)2

= g(9)
= g(5+4)

( g    f )(5)  

it becomes clear that  and  are not the same. In general,
composition is not a commutative operation, and we will need to pay close
attention to the order of the functions.

Evaluate Composite Functions

Now that we know order is important, we should look at a few more examples.
This time  and  are defined by the tables below.

x -2 -1 0 1 2

f (x) 5 -13 1 2 7

x 1 2 3 4 5
g(x) 3 -1 5 -2 2

To evaluate , for example, we first use the table to find , and
then find . Thus, .

Contrast this with  which is undefined.

The Domain of Composite Functions

Let's consider another analogy for composition. Imagine you wanted to fly from
Portland, Oregon to Tahiti. Since there is no direct service from Portland to
Tahiti, you would need to fly somewhere else first and then find a connecting
flight. For instance, you might fly to Hawaii first and then on to Tahiti.

(f ∘ g)(5) (g ∘ f)(5)

f g

(g ∘ f)(1) f(1) = 2
g(2) = −1 (g ∘ f)(1) = −1

(f ∘ g)(1) = f(g(1)) = f(3)

QUICK CHECK

Use the table above to evaluate the following, if possible.

1. 

2. 

3. 

4. 

5. 

(f ∘ g)(2)

(g ∘ f)(0)

(f ∘ g)(1)

(g ∘ f)(2)

(g ∘ g)(5)



If we regard each flight as a function, then the entire trip could be viewed as a
composition of functions. This analogy gives us two useful insights.

First, in order for composition to work, there must be some location, like Hawaii,
where the range of the first function intersects the domain of the second
function. Otherwise, the composition is undefined, as you discovered previously.

Second, it's possible to create a single new function that has the same actions as
the composition of the two separate functions. This new function would be
similar to a direct flight from Portland to Tahiti.

Consider the two functions  and  defined by the arrow diagrams below.

1
 2 1010

 20
13
 17

g
f5

 

Since the range of  intersects the domain of  only at , the domain of
 can only be the single number , there's no way to use  as an input to
 because  is not in the domain of .

h =f   g
2
 

13
 

And just as a direct flight from Portland to Tahiti would not stop in Hawaii, the
composed function  maps  directly to  without stopping at .

f g

g f 10
h = f ∘ g 2 1
h = f ∘ g 5 f

h = f ∘ g 2 13 10



Composition with Tables

If we return to the functions  and  as defined in the tables below,

x -2 -1 0 1 2

f (x) 5 -13 1 2 7

x 1 2 3 4 5
g(x) 3 -1 5 -2 2

we should be able to compute values of .

x 1 2 3 4 5
undefined -13 5 7undefinedh(x)= ( f   g)(x)  

Since  and  are not valid inputs to  we conclude
that the domain is the set .

Notice again that the domain of  is always a subset of the domain of .

Equation of 

When  and  are defined by equations, we find the equation for  by
composing the two equations rather than working with individual values.

For instance, if  and  then

h(x) = ( f   g)(x)  = f (g(x))

= 3(2x)2 - (2x) + 2

Use definition of composition.

Replace g(x) with 2x.

Replace every x in f(x) with 2x.

Simplify.

= f (2x)

= 3(4)x - 2x + 2

The benefit of having an equation for  is that it allows you to evaluate
the composition more efficiently. You need only deal with one function instead
of two.

f g

h(x) = (f ∘ g)(x)

x = 1 x = 3 h(x) = (f ∘ g)(x)
{2, 4, 5}

h = f ∘ g g

QUICK CHECK

Using the same function tables as above, what is the domain of 
?

(g ∘ f)(x)

f ∘ g

f g h = f ∘ g

f(x) = 3x2 − x + 2 g(x) = 2x

h = f ∘ g



Finding an equation for  also helps us determine its domain.

Take, for example,  and . The composed equation is
.

Since the natural logarithm can only take in positive numbers, the domain of
 can only include  values for which . Therefore, the domain

of  must be .

Notice that this domain of  is a subset of the domain of , which is all real
numbers. Assuming  exits, its domain is always either the entire
domain of  or a subset of it.

Graph Composite Functions

The graphs of composite functions can display a wide range of behaviors. In the
figure below you can let  and  be any functions you want. The graph of

 will be drawn as you change  or press Play.

Consider putting a polynomial like  inside of an exponential
function . Or, as in the example below, compose two functions that
are vertical reflections of each other. The goal here is just to have fun making
graphs, so try as many as you like before continuing.

QUICK CHECK

Using the same functions as above, verify that  gives the same
value as .

(f ∘ g)(1)
h(1)

h = f ∘ g

f(x) = ln(x) g(x) = x − 4
h(x) = (f ∘ g)(x) = ln(x − 4)

h = f ∘ g x x − 4 > 0
h = f ∘ g x > 4

x > 0 g
h = f ∘ g

g

QUICK CHECK

1. If  and , find the equation for
 and state its domain.

2. If  and , find the equation for 
and state its domain.

f(x) = √x g(x) = 8 − x3

h(x) = (f ∘ g)(x)

f(x) = ex g(x) = 1/x h(x) = (f ∘ g)(x)

f g
h = f ∘ g x

g(x) = 2x2 − x4

f(x) = ex



To use the interactive figure visit https://www.geogebra.org/m/Kbg4KOk8

Determining the exact shape of the graph of a composite function  by
examining the equations and/or graphs of  and  is a complicated process.
Generally, it will be best to find the equation for  and then use a
computer or graphing calculator to analyze its behavior.

For instance, if  and  then  and it
can be graphed as follows.

-3 -2 -1 1 2 3

-1

2

1

With the graph it is easier to analyze the behavior of the function. For instance, it
is now clear that the function  has a maximum of  at . We could
also discuss asymptotes and regions where the function is increasing or
decreasing as well as domain and range.

Looking Ahead

We now have five different ways to combine functions, addition, subtraction,
multiplication, division and composition. Combining two functions with any of
these operations always produces a new function.

Many of these combined functions are generally not one-to-one. They do not
pass a vertical line test and do not have inverses unless the domain is restricted.
In the next section we will discuss how to find inverses of these more
complicated functions.

h = f ∘ g
f g

h = f ∘ g

f(x) = e−x g(x) = x2 h(x) = (f ∘ g)(x) = e−x2

h h(x) = 1 x = 0

QUICK CHECK

Using the graph above, or a graph on your own calculator, discuss
domain, range, asymptotes, etc. of .h(x) = (f ∘ g)(x) = e−x2

https://www.geogebra.org/m/Kbg4KOk8
https://www.geogebra.org/m/Kbg4KOk8
https://www.geogebra.org/m/Kbg4KOk8


We will also see how composition can be used to prove that two functions are
inverses of each other.



4.4 Inverses of Combined Functions

Introduction

In the 1980's Hasbro changed the toy world by introducing a line of robot action
figures known as Transformers. What made each Transformer special was that if
you bent the legs, twisted the torso, and folded the arms, the robot would
change into something else, like a car or an airplane. Undoing each of those
steps in the reverse order would change it back into a robot again.

Converting a Transformer is very similar to the shoes-and-socks method of
finding an inverse function that we introduced in. Unfortunately, that technique
seldom works on combined functions. In this section we develop a new
procedure that can be applied to any function.

Review the Shoes and Socks Method

Let's review the shoes-and-socks method for finding an inverse. We'll use

 as an example. The first step in the process was to identify the

operations performed by the function, following the standard order of
operations. The next step was to list the inverse operations in the reverse order.

Operations Performed
by the Function

Operations Performed
by the Inverse

1. Cube 1. Multiply by 

2. Add 2. Subtract 

3. Divide by 3. Cube root

Since the list on the right describes exactly what the inverse function does, we
use it to build the equation for . This is the final step.

f(x) = x3+1
5

5

1 1

5

f−1

Image by Vinson Tan from Pixabay

https://pixabay.com/images/id-3871893/


Review Graphing Inverses

Now consider a function such as  where  appears more than once

in the equation. Since we cannot determine what happens to  first, we cannot
establish an order of operations and cannot use the shoes-and-socks method,
despite the fact that this function is indeed one-to-one.

We can, however, find the graph of  by reflecting points on the graph of
 around the line , as in the figure below (move the blue slider to see

the reflection).

To use the interactive figure visit https://www.geogebra.org/m/izzOv7Yo

Start with an x: x

Multiply by 5: 5x
Subtract 1: 5x − 1

Cube root: 3√5x − 1

Write as a function: f−1(x) = 3√5x − 1

QUICK CHECK

Use this shoes-and-socks method to find the inverse of .g(x) = 2x − 7

f(x) = x−5
x−4 x

x

f−1(x)
f(x) y = x

https://www.geogebra.org/m/izzOv7Yo
https://www.geogebra.org/m/izzOv7Yo
https://www.geogebra.org/m/izzOv7Yo


Notice that each point  on the graph of  turns into the point  on the
graph of the inverse. This may not seem like a significant fact, but it is the key to
a new algebraic method for finding the equations of inverses.

Learn the Switch and Solve Method

We have seen that if  is a point on the graph of a one-to-one function ,
then the point  is on the graph of . The significance of this that
switching  and  in the equation of a one-to-one function creates an implicit
equation for its inverse. All that remains is to solve that equation for  so that
we can write it with function notation. For obvious reasons, this will be called the
switch-and-solve method.

The switch-and-solve method can be broken down into a four-step process.

We will illustrate this process by returning to the same function 

that we used earlier with the shoes-and-socks method.

To find the inverse using the switch-and-solve method we start by rewriting the
function as an equation with  in place of .

Then we turn every  into a  and vice versa.

The next step is to solve this equation for .

Lastly we rewrite this equation using inverse function notation.

Notice that this is the same answer we obtained earlier with the shoes-and-
socks method and that the steps needed to solve for  are exactly the steps
listed in the shoes-and-socks method.

(x, y) f (y,x)

(x, y) f

(y,x) f−1

x y
y

Step 1: Replace f(x) with y

Step 2: Switch x and y

Step 3: Solve for y

Step 4: Replace y with f−1(x)

f(x) = x3+1
5

Step 1:  Replace f(x) with y. 

y f(x)

y =
x3 + 1

5

Step 2:  Switch x and y. 

x y

x =
y3 + 1

5

Step 3:  Solve for y. 

y

5x = y3 + 1 Multiply both sides by 5

5x − 1 = y3 Subtract 1 from both sides
3√5x − 1 = y Take the cube root

Step 4:  Replace y with f−1(x). 

f−1(x) = 3√5x − 1

y



Use the Switch and Solve Method

Since there are several solving techniques that may arise when doing the switch-
and-solve method, we will explore a few more examples before looking at
functions with more than one .

Example 1

Here we will find the inverse of . Since this is an exponential
function, after we switch variables we should expect the solving process to
involve the natural logarithm.

We now know that the inverse of  is .

Example 2

In this next example we will use the switch-and-solve method to find the inverse
of . The solving steps do not involve anything beyond basic
inverse operations. Please try each step on your own and then check your
answer.

Example 3

Now let's look at a power function  and restrict its domain 
so that it is one-to-one. The steps below outline the complete process for finding
the equation for .

We now face a choice, should we pick  or  as the inverse?

x

f(x) = ex − 2

f(x) = ex − 2 Original function

y = ex − 2 Replace f(x) with y

x = ey − 2 Swap x and y

x + 2 = ey Add 2

ln(x + 2) = ln(ey) Apply ln to both sides

ln(x + 2) = y Simplify

f−1(x) = ln(x + 2) Replace y with f−1(x)

f(x) = ex − 2 f−1(x) = ln(x + 2)

f(x) = −5x + 8

Step 1:  Replace f(x) with y. 

Step 2:  Switch x and y. 

Step 3:  Solve for y. 

Step 4:  Replace y with f−1(x). 

f(x) = x2/3 + 6 x ≤ 0

f−1

f(x) = x2/3 + 6 Original function

y = x2/3 + 6 Replace f(x) with y

x = y2/3 + 6 Switch x and y

x − 6 = y2/3 Subtract 6

(x − 6)3 = y2 Apply the 3rd power

±√(x − 6)3 = y Apply the square root

y = ±(x − 6)3/2 Rewrite

(x − 6)3/2 −(x − 6)3/2



Since the inputs and outputs of a function and its inverse should switch places,
comparing the domain and range of our original function against these two
options should point us to the correct choice.

Both of our options have a domain of , matching the range of , but only

 has a range that matches the domain of , making it the correct
choice for .

Another way to see this is to look at the graphs. The graphs of  and  must
be symmetric across the line . In this case, our function has a y-intercept at

, so the inverse must have an x-intercept at .

6

6

The takeaway is that whenever the equation for  is not one-to-one, as it was
in this example, we need to look closely at the graph of the function and its
domain and range to help us choose the correct inverse.

Inverses of Combined Functions

Let's return to the function  which we graphed earlier. Since 

occurs more than once, the switch-and-solve method is the best way to find the
inverse. Here are all of the steps.

x ≥ 6 f

−(x − 6)3/2 f

f−1

f f−1

y = x
(0, 6) (6, 0)

f−1

QUICK CHECK

1. Suppose the domain of a one-to-one function  is known to be .
What is the range of ?

2. Suppose the point  is on the graph of a one-to-one function.
Which point must be on the graph of the inverse function?

f [3, 18]
f−1

(−2, 5)

f(x) = x−5
x−4 x



Using function notation, we can now say that  is the inverse of

.

As you can see, finding a formula for an inverse function can be very difficult. In
fact, sometimes it is impossible. For example, to find the inverse of ,

 we would need to solve  for .

By removing the exponential we've freed up one , but the other  is now stuck
inside of the logarithm. If we were to free the  inside of the logarithm, then the
other  would be trapped back in an exponential. It's a loop we could never get
out of.

f(x) = Original function

y = Replace f(x) with y

x = Switch x and y

x(y − 4) = y − 5 Multiply by y − 4

xy − 4x = y − 5 Distribute x

xy − 4x − y = −5 Subtract y

xy − y = 4x − 5 Add 4x

y(x − 1) = 4x − 5 Factor out y

y = Divide by x − 1

f−1(x) = Replace y with f−1(x)

x − 5

x − 4
x − 5
x − 4
y − 5
y − 4

4x − 5

x − 1
4x − 5

x − 1

f−1 = 4x−5
x−1

f(x) = x−5
x−4

f(x) = xex

x ≥ 0 x = yey y

x = yey Original equation

= ey Divide by y

ln( ) = y Apply the natural logarithm

x

y

x

y

y y
y

y



Verify Inverse Functions

You'll remember that in Section 1.5 we introduced the idea that a function
combined with its inverse should act like a round trip airplane flight, bringing
you back to where you started. Now that we understand composition, we can
state this rule more precisely.

Given a one-to-one function  and its inverse , the following round trip
properties hold

for all the  in the domain of  and

for all the  in the domain of . In other words, a function and its inverse should
cancel each other, no matter which way they are composed together.

These properties are only true for inverse functions. As a consequence, they can
be used to verify that two functions are inverses.

Earlier, in Example 2, we found that the inverse of  was

. Let's use the round trip properties to verify that these are

indeed inverses.

First we'll check to see that .

f f−1

(f ∘ f−1)(x) = f(f−1(x)) = x

x f−1

(f−1 ∘ f)(x) = f−1(f(x)) = x

x f

f(x) = −5x + 8

f−1(x) = x−8
−5

(f ∘ f−1)(x) = x

(f ∘ f−1)(x) = f (f−1(x)) Definition of composition

= f ( ) Use equation for f−1(x)

= −5( )+ 8 Use equation for f(x)

= (x − 8) + 8 Multiplication and division cancel

= x Simplify

x − 8
−5

x − 8
−5

http://localhost:1313/1.5


We also need to check composition in the other direction to see if
.

Since both round trip properties hold, we have verified that these two functions
are truly inverses of eachother.

Applications of Inverses

One of the main jobs of the ship L.M. Gould is to pick up containers of food and
supplies from Punta Arenas, Chile, and deliver them to the scientists working at
Palmer Station in Antarctica.

Suppose the amount of food, in pounds, that the station has on hand  days
after being re-supplied is given by . The inverse of this
function is

But how should we interpret the inverse, what would it mean in this situation?
Our new switch-and-solve method not only gives the equation for the inverse,
but can also help us see the context of the inverse as well.

The key is to recognize that the inputs and outputs are trading places. If the
original function computes pounds of food based on the number of days since
the supply ship arrived, then the inverse would allow the scientists to calculate
how long it has been since the ship last visited by measuring the amount of food
available.

(f−1 ∘ f)(x) = x

(f−1 ∘ f)(x) = f−1 (f(x)) Definition of composition

= f−1 (−5x + 8) Use equation for f(x)

= Use equation for f−1(x)

= Cancel +8 and -8

= x Simplify

(−5x + 8) − 8

−5
−5x
−5

QUICK CHECK

Are the functions  and  inverses? Use the

round trip properties to justify your answer.

f(x) = + 3x
2 g(x) = 2x − 3

x
f(x) = 11200 − 200x

f(x) = 11200 − 200x Original function

y = 11200 − 200x Replace f(x) with y

x = 11200 − 200y Switch x and y

y = Solve for y

f−1(x) = Replace y with f−1(x)

x − 11200
−200

x − 11200
−200

Photo by Bob DeValentino of the NSF

https://photolibrary.usap.gov/#1-1


Looking Ahead

In this chapter we've seen how to make new, more complicated functions by
combining simple functions through the operations of function addition,
subtraction, multiplication, division and composition.

We have also seen that as the functions become more complicated, their
inverses, if they exist, are difficult or even impossible to find.

In the next chapter we will focus on the properties of polynomial and rational
functions. Since their equations involve several terms and are not in general
one-to-one, we will not spend time finding their inverses.

QUICK CHECK

Evaluate  and describe what it would mean to the scientists in
Antarctica.

f−1(1000)

http://localhost:1313/chapter-5/


5.1 Graphs of Polynomials

Introduction

Polynomials have intrigued mathematicians for centuries. Ancient Egyptian,
Babylonian, and Greek mathematicians all studied simple polynomials.

The Chinese are known to have worked with cubics in the early 7th century, at
the same time mathematicians in India were busy creating the quadratic
formula.

Two centuries later the Persian mathematician al-Khwārizmı̄ introduced the
world to “al-jabr”, or “algebra”, as a process for solving polynomial equations.

During the Renaissance polynomials spread throughout western Europe and
contests were held to see who could solve the hardest polynomial problem.

As we explore the properties and behaviors of polynomial functions in this
chapter you might begin to see why they have been able to hold the attention of
great minds throughout history.

Standard Form of a Polynomial

One attractive feature of polynomial functions is the simplicity of their
equations. In Chapter 4 you learned that polynomials are sums of power
functions with non-negative integer powers.

For example, the polynomial  is a sum of the four
power functions ,   ,      and   .

Each power function is called a term of the polynomial. The highest power is
called the degree of the polynomial, and the coefficient of that term is called
the leading coefficient. The term without an  is referred to as the constant
term.

p(x) = 5x3 + 7x2 − 4x + 8
5x3 7x2 −4x 8

x

Statue of Al-Khwārizmı̄ in his birth town Khiva, Uzbekistan. Photo by Yunuskhuja Tuygunkhujaev
on Wikipedia

http://localhost:1313/img/chapter-5/quadratic_formula.svg
http://localhost:1313/img/chapter-5/quadratic_formula.svg
http://chapter-4/4.1#polynomials
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi#/media/File:Khiva.jpg
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi#/media/File:Khiva.jpg


p (x )=5x 3 + 7x 2 - 4 x + 8

terms

leading
coefficient

degree constant
term

It is standard to write a polynomial so that the powers are in descending order.

End Behavior of Polynomials

It's important to be able to identify the degree and leading coefficient of a
polynomial because they influence the overall shape of its graph.

Even vs Odd Degrees

Since degrees of polynomials are always whole numbers, the degree must either
be an even number or an odd number. The ends of polynomials with even
degrees behave differently than those with odd degrees.

To investigate this, random polynomials with different degrees are shown in the
figure below. As you switch from one to another, try to decide how even degree
polynomials are different from odd degree polynomials. In particular, pay
attention to the end behavior of the graphs.

QUICK CHECK

1. Rewrite the polynomial  in standard form, with
the powers in descending order. Then identify the degree, leading
coefficient and constant term.

p(x) = 6x − 4x2 + 15



To use the interactive figure visit https://www.geogebra.org/m/d5gxgxxc

When a polynomial has an even degree, both ends of its graph will point in the
same direction and it will look somewhat similar to a parabola. When the degree
is odd, however, one end will go up while the other goes down, just like a line.

Positive vs Negative Leading Coefficients

The leading coefficient of a polynomial can change the direction of the graph,
depending on if it is positive or negative. In this figure you can change the sign
of the leading coefficient for several polynomials.

QUICK CHECK

1. Without graphing, describe the end behavior of
 Do the ends of the graph both point in the

same direction or do they point in opposite directions?

2. Without graphing, describe the end behavior of 
Do the ends of the graph both point in the same direction or do they
point in opposite directions?

p(x) = 2x5 − 3x2 + 4

p(x) = x4 + 2x − 7

https://www.geogebra.org/m/d5gxgxxc
https://www.geogebra.org/m/d5gxgxxc
https://www.geogebra.org/m/d5gxgxxc


To use the interactive figure visit https://www.geogebra.org/m/umnevpzw

If the degree is even then the graph mimics the behavior of a parabola, with
both ends pointing up when the leading coefficient is positive and down when it
is negative.

If the degree is odd then the graph behaves like a line, pointing up to the right
when the leading coefficient is positive and pointing down when the leading
coefficient is negative. This mirrors the behavior of a line with positive or
negative slope.

Since the end behavior of a polynomial depends only on the degree and the
leading coefficient, in the long run its graph will look like the graph of its leading
term.

In this figure you can zoom out on the graphs of  and

.

QUICK CHECK

1. Without graphing, describe the end behavior of
.

2. Without graphing, describe the end behavior of
.

p(x) = −2x6 − 3x5 + 9

p(x) = −3x5 + x4 − 7x3 + 5x − 6

p(x) = x4 − 2x2 + x + 11
2

f(x) = x41
2

https://www.geogebra.org/m/umnevpzw
https://www.geogebra.org/m/umnevpzw
https://www.geogebra.org/m/umnevpzw


To use the interactive figure visit https://www.geogebra.org/m/wxpddg2b

>
We can see that the graph of  is nearly identical to

the graph of the power function  as we zoom out, even though they
are very different for small values of .

In general, any polynomial will eventually behave like the power function ,
where  is the leading coefficient and  is the degree of the polynomial.

Determine Degree & Leading Coefficient from a Graph

Knowing how the end behavior is connected to the degree and leading
coefficient allows us draw conclusions about the equation of a polynomial
simply by observing its graph. Specifically, we know that

If both ends point in the same direction, then the degree is even.
If one end is up while the other is down, then the degree is odd.
If the right end points up, then the leading coefficient is positive.
If the right end points down, then the leading coefficient is negative.

p(x) = x4 − 2x2 + x + 11
2

f(x) = x41
2

x

axn

a n

https://www.geogebra.org/m/wxpddg2b
https://www.geogebra.org/m/wxpddg2b
https://www.geogebra.org/m/wxpddg2b


QUICK CHECK

For each graph, decide if the degree of the polynomial is even or odd. Also
state whether the leading coefficient is positive or negative.

1. 

2. 

3. 



Turning Points

Another thing that makes polynomials are useful is their ability to change
direction. The point where a polynomial changes from increasing to decreasing,
or vice versa, is known as a turning point. Turning points are always local
maximums or local minimums.

The number of turning points is related to the degree of the polynomial. Look
again at the graphs above. Can you spot a connection between the degree and
the number of turns?

From the graphs it would seem that the number of turns is always one less than
the degree, since the 2nd degree polynomial had 1 turn, the 3rd degree had 2
turns, and the 4th degree had 3 turning points.

Unfortunately, that's not always true. Take a look a the three graphs below.

4. 



All three are 5th degree polynomials but each graph has a different number of
turns. It seems that a 5th degree polynomial can have 4 turns, but it could also
have less than 4.

A good way to describe this is to say that the maximum number of turning
points is always one less than the degree.

Find the Minimum Degree from a Graph

Since we can find the maximum number of turns by looking at the equation, we
should also be able to do the reverse: find the minimum degree by looking at the
graph. This is done by counting the number of turns and adding 1.

As an example, consider the following polynomial.

Since the graph has 3 turning points, the degree of the polynomial must be at
least 4. The degree could be higher, but it must be at least 4.

We actually know a little more than that. Since both ends point in the same
direction, the degree must be even. So the actual degree could be any even
degree of 4 or higher. It cannot, for instance, be a 5th degree polynomial.

QUICK CHECK

1. How many turns can a 6th degree polynomial have?

2. How many turns can a 3rd degree polynomial have?



QUICK CHECK

State the number of turning points and the minimum degree of each
graph.

1. 

2. 

3. 



Constant Term

The behaviors we have investigated so far were connected to the degree and the
leading coefficient of the polynomial. Next we will look at how the constant term
affects a polynomial's graph.

In the interactive figure below you can adjust the value of the constant term in a
3rd degree polynomial. Look for a connection between the constant term and
the graph. Make a note of your observations before continuing.

To use the interactive figure visit https://www.geogebra.org/m/mmu4fvmg

You should have found that the constant term of a polynomial is the value of y-
intercept of the graph. The reason for this is simple.

Recall that the y-intercept of any function occurs when . Replacing  with 
will eliminate every term containing a power of , leaving just the constant term.

Take  as an example. If we evaluate  we find

which verifies that the y-intercept is , exactly the same value as the
constant term.

x = 0 x 0
x

p(x) = −4x7 + 6x4 − 18x2 + 9 p(0)

p(0) = −4(0)7 + 6(0)4 − 18(0)2 + 9 = 9

y = 9

QUICK CHECK

1. What is the value of the y-intercept of the polynomial
?p(x) = −5x2 + 9x − 4

https://www.geogebra.org/m/mmu4fvmg
https://www.geogebra.org/m/mmu4fvmg
https://www.geogebra.org/m/mmu4fvmg


Factoring is the

process of breaking a

polynomial into simpler

pieces which, when

multiplied together, are

the same as the original

polynomial. For instance,

 is the

factored form of

.

Real Zeros of Polynomials

While it is easy to see the y-intercept from the standard equation of a
polynomial, finding the x-intercepts is much more challenging.

However, if the polynomial has been factored , then finding the x-intercepts
is simple.

The Factor Theorem

In the interactive figure below, you can change the location of the x-intercepts.
As you do so, pay attention to how the factored equation changes.

To use the interactive figure visit https://www.geogebra.org/m/EyHYBvpj

You probably noticed that there is a factor for each x-intercept. The reason for
this is that x-intercepts are real number solutions to . And if  is a
factor, then  will cause the entire function to equal zero. In fact, x-
intercepts are often called real zeros for this very reason.

In general,  if and only if  is a factor of the polynomial. In other
words, knowing that  is a factor tells us that  is a zero. The reverse
is also true. If  is a zero then  is a factor. This is known as the
factor theorem.

With the factor theorem we can quickly find the x-intercepts of any factored
polynomial. For instance, if , then the x-
intercepts are , , and .

2 6
26

(x + 2)(x + 3)

x2 + 5x + 6

p(x) = 0 (x − c)
x = c

p(c) = 0 (x − c)
(x − c) x = c

x = c (x − c)

p(x) = (x − 3)(x + 6)(x + 15)
x = 3 x = −6 x = −15

https://www.geogebra.org/m/EyHYBvpj
https://www.geogebra.org/m/EyHYBvpj
https://www.geogebra.org/m/EyHYBvpj


Multiple Zeros

Consider a polynomial such as . The factor theorem tells
us that this polynomial has real zeros at  and . But what does it
mean for a polynomial to have two zeros with the same value? Can it have more
than one x-intercept at ?

The figure below will help answer this question. You are fee to move the real
zeros (blue points) anywhere you want. Look for a change in the shape of the
graph and a corresponding change in the equation when multiple zeros are put
in the same spot.

To use the interactive figure visit https://www.geogebra.org/m/jupSjhUq

Putting multiple zeros in the same spot creates a factor of the form 
where the power  corresponds to the number of zeros. If the multiplicity of the
zero is odd, then the graph crosses the x-axis. If the multiplicity is even, then the
graph does not cross the x-axis but instead just touches it and then bounces off.

QUICK CHECK

1. What are the x-intercepts of ?

2. Find the x-intercepts of .

p(x) = (x − 2)(x + 4)(x − 1)

p(x) = (x)(x − 7)(x + 3)

f(x) = (x − 2)(x − 2)
x = 2 x = 2

x = 2

(x − c)m

m

https://www.geogebra.org/m/jupSjhUq
https://www.geogebra.org/m/jupSjhUq
https://www.geogebra.org/m/jupSjhUq


Determine Polynomial Functions from a Graph

We have now arrived at a point where we can create an equation for a
polynomial simply by analyzing its graph. To see how this might work, let's start
with this graph.

Since the graph has just one turn and both ends point upward, we expect the
equation to be at least a 2nd degree polynomial with a positive leading
coefficient. It should also have a constant term of , since the y-intercept is at

.

In addition, the zeros at  and  tell us that  and  must
be factors. This suggests that the equation might be

.

QUICK CHECK

Identify the zeros of the polynomial and state whether their multiplicities
are even or odd.

−2
(0, −2)

x = −2 x = 1 (x + 2) (x − 1)

p(x) = (x + 2)(x − 1) = x2 + x − 2



This equation meets all of the expectations we had above; it is a 2nd degree
polynomial with a positive leading coefficient and the y-intercept is at .
Graphing this equation on a calculator

shows that it does have the right shape.

Let's try a few more examples, starting with the graph below.

We can see 2 turning points which suggests that the degree is at least 3. We also
know that the leading coefficient is negative and the y-intercept is .

The graph has real zeros at ,  and , which means ,
 and  must be factors, so one possible equation is

To see if this is a good fit we'll expand the equation and check its leading
coefficient and y-intercept.

−2

QUICK CHECK

Find an equation for a polynomial that has zeros at  and .x = 5 x = −1

(0, 2)

x = −1 x = −2 x = 3 (x + 1)
(x + 2) (x − 3)

p(x) = (x + 1)(x + 2)(x − 3)

p(x) = (x + 1)(x + 2)(x − 3)

= (x + 1)(x2 − 3x + 2x − 6) multiply(x + 2)(x − 3)

= (x + 1)(x2 − x − 6) combine − 3x + 2x

= (x3 + 3x2 + 2x − 3x2 − 9x − 6) distribute(x + 1)

= x3 − 7x − 6 simplify



The leading coefficient is positive and, since the constant term is , this
function has a y-intercept at . Since neither of these matches our graph,
we'll need to find a way to change both without altering the real zeros.

We can change both the leading coefficient and the y-intercept if we multiply it
by a constant , making the equation . Remember,
multiplying a function by a constant vertically stretches and/or flips the graph, it
doesn't change the x-intercepts or zeros.

Since we want to have a y-intercept of , the trick will be to find  when 
.

This gives us , which has all the

properties (zeros, degree, leading coefficient, and y-intercept) of the graph we
were trying to match. Plotting this new equation on a calculator

shows that it is, indeed, a good fit.

As our final example consider this graph.

−6
(0, −6)

a p(x) = a(x3 − 7x − 6)

2 a p(0) = 2

p(x) = a(x3 − 7x − 6)

p(0) = a((0)3 − 7(0) − 6) replace each x with 0

p(0) = −6a simplify

2 = −6a since p(0) = 2

− = a divide by  − 6
1
3

p(x) = − (x3 − 7x − 6) = − x3 + x + 21
3

1
3

7
3

QUICK CHECK

1. Find the equation for a polynomial with zeros at  and 
and a y-intercept of .

x = 2 x = −4
(0, 16)



This graph appears to have a single zero at , a multiple zero with even
multiplicity at , and a multiple zero with odd multiplicity at .

When faced with graphs that have multiple zeros we will choose the lowest
power possible unless directed otherwise. Thus we start with the equation

To find  we need another point on the graph. Note that the point  is on
the graph, so  which will help us solve for .

Using  we arrive at the equation .

Checking this on a graphing calculator

shows that we have found a good match.

x = 0
x = −1 x = 2

p(x) = a(x)(x + 1)2(x − 2)3

a (1, 2)
p(1) = 2 a

p(x) = a(x)(x + 1)2(x − 2)3

p(1) = a(1)(1 + 1)2(1 − 2)3 Replace each x with 1

2 = −4a since p(1) = 2

− = a divide by  − 4
1
2

a = − 1
2

p(x) = − (x + 1)2(x)(x − 2)31
2



Looking Ahead

We should point out that this process of finding the factored equation of a
polynomial from a graph only works if the number of real zeros equals the
degree.

As a case in point, look at the graph below.

There is only one real zero, , implying that the equation only has one
factor  and is the first degree polynomial .

But we can clearly see 2 turning points! Since a first degree polynomial cannot
have 2 turning points, there must be more to this polynomial than meets the
eye.

What we can't see are the zeros that are imaginary numbers. While real zeros
can be picked out as the x-intercepts, these imaginary zeros cannot be seen on
a regular graph. In the next section we will discuss ways to visualize and find
imaginary zeros.

QUICK CHECK

1. Find an equation for the polynomial shown below.

x = −2
(x + 2) p(x) = x + 2



The factor theorem

told us that  is an x-

intercept if and only if

 is a factor

5.2 Zeros & Polynomial Equations

Introduction

As the smoke cleared on the morning of May 30, 1832, young Évariste Galois lay
mortally wounded on the ground, having been shot in the stomach. Though only
20 years old, Galois had earned a reputation not only as a brilliant
mathematician, but also as a reckless political activist who had threatened the
life of the French king and been arrested for carrying loaded weapons during a
protest in Paris.

No one knows for sure why Galois was involved the duel. Some say that he was
defending the honor of a young lady or that he was the victim of a government
conspiracy. All we know is that he feared for his life and spent the night before
the duel writing farewell letters to close friends.

In one of those letters Galois famously described a new mathematical theory
that revealed the hidden framework of polynomials.

Zeros of Polynomials

In the last section we saw that x-intercepts are real number solutions to the
polynomial equation  and that they are simple to find if the polynomial
has been factored. If the polynomial isn't factored, then solving  can
be challenging.

Throughout history efforts have been made to find formulas that will produce
the zeros of polynomials. The Indian mathematician Brahmagupta is generally
credited as being the first to publish a description of the quadratic formula in
628 AD, though the roots of the solution go back thousands of years. The
quadratic formula gives the two zeros of any 2nd degree polynomial.

p(x) = 0
2 7

27

x = c

(x − c)

p(x) = 0

Drawing by Bauce and Rouget

http://localhost:1313/img/chapter-5/quadratic_formula.svg
https://commons.wikimedia.org/wiki/File:Duel_pistolet.JPG


Abel was a young

Norwegian mathematician

struggling to find steady

income so he could marry

his fiancée. He died,

unwed, at the age of 26

from tuberculosis. Two

days later a letter arrived

offering a post at the

University of Berlin.

In the 1500's, Niccolò Tartaglia, one of the most gifted mathematicians in Italy,
found a general process for solving all cubic equations. Within a few years a
fellow Italian by the name of Lodovico Ferrari found a way to find the zeros of all
4th degree polynomials.

The work of Tartaglia and Ferrari showed there are always 3 solutions to every
3rd degree polynomial and 4 solutions to every 4th degree polynomial. Following
that pattern, it would be reasonable to expect that a polynomial with a degree of

 always has  zeros.

If you made that assumption, you'd be in good company. In 1799, Carl Friedrich
Gauss, arguably the greatest mathematician in history, proved that result as a
consequence of his Fundamental Theorem of Algebra.

While the proof is very complicated and beyond the scope of this text, what the
Fundamental Theorem of Algebra says is actually very simple. In essence, Gauss
showed that a polynomial whose degree is  will always have exactly  zeros.
Some of the zeros might involve imaginary numbers, some may be repeated, but
there will always be  zeros total.

For instance, since  is a  degree polynomial, we know
that it has exactly  zeros.

Galois Theory

Gauss showed that for an polynomial of degree  there will always be 
solutions to the equation . He did not, however, come up with a
formula to find all of those solutions. And there's a very good reason he didn't.

In the early 1800's, Galois' notes and letters, together with the work of his
equally tragic contemporary Niels Henrik Abel , showed that it is impossible
to find a general algebraic formula (ie. a formula involving only addition,
subtraction, multiplication, division, powers and roots) for the zeros of a
polynomial if the degree is higher than 4.

In other words, we cannot count on using a formula to find the zeros of a
polynomial if its degree is higher than 4. In fact, since the formulas for the cubic
and quartic are impractical, the only polynomial formula you'll likely need to
remember is the quadratic formula.

Instead of using complicated formulas, we will use a combination of graphical,
algebraic, and numerical methods to find the zeros of polynomials. And since
graphs help us estimate the number and location of any real zeros as well as the
number of imaginary zeros, it is preferable to study the graph of a polynomial
first.

n n

n n

n

p(x) = 2x4 − 3x + 8 4th
4

QUICK CHECK

1. How many total zeros does  have?

2. How many total zeros does  have?

p(x) = −3x6 + x2 − 9x

p(x) = 5x3 − 4

n n
p(x) = 0

2 8
28

http://localhost:1313/img/chapter-5/cubic_formula.svg
http://localhost:1313/img/chapter-5/quartic_formula.svg
http://localhost:1313/img/chapter-5/quadratic_formula.svg


Finding Possible Zeros

Since the real zeros of a polynomial correspond to the x-intercepts of its graph,
we can sometimes identify them with just by looking.

For instance, the graph of , shown here, appears to have
x-intercepts at , , ,  and .

But what if a graph isn't available or if the graph is difficult to read? For example,
the cubic polynomial  appears to have zeros when

 and  the location of third zero is not clear.

It might be  or  or maybe it's some irrational number like . We simply

can't tell just by looking.

Luckily, there is a nice tool called the rational zeros theorem that allows us to
make a list of numbers that might be zeros. Take a look at the table below and
see if you can spot the (color-coded) pattern yourself.

p(x) = x5 − 5x3 + 4x
x = −2 x = −1 x = 0 x = 1 x = 2

p(x) = 3x3 + 8x2 + 3x − 2
x = −2 x = −1

1
4

1
3

√ 1
8



15x 2 + 11x - 14

4x - 3

12x3 + 32x 2 + 11x - 15

3
4

5
3- 1

2
3
2-, ,

7
5- 2

3,

Polynomial Zeros

Notice that the numerators of each zero are factors of the constant term and the
denominators are factors of the leading coefficient.

If a polynomial with integer coefficients has a rational zero, then the rational
zeros theorem says this pattern will always occur. Which means we can use
that pattern to reverse engineer a list of fractions that might be zeros.

Let's test this and find all the fractions that might be zeros of
.

The constant term is , which can be divided evenly by , so those are
its factors.

The factors of the leading coefficient  are .

Putting those together, our list of fractions that might be zeros is

Notice that the two zeros we spotted from the graph,  and , are
in this list. If our missing third zero is a fraction, then the rational zeros theorem
guarantees that it is in this list. The theorem does not however, guarantee that
the missing zero is a fraction.

Verifying Zeros

You'll recall that the real zeros of a polynomial are real numbers that are
solutions to the equation . Graphically they correspond to the x-
intercepts of its graph.

p(x) = 3x3 + 8x2 + 3x − 2

−2 ±1, ±2

3 ±1, ±3

± , ± , ± , ±
1

1

2

1

1

3

2

3

x = −2 x = −1

QUICK CHECK

Consider the polynomial .

1. List all the factors of the constant term .

2. List all the factors of the leading coefficient .

3. List all the fractions with numerators that are factors of  and
denominators that are factors of .

p(x) = 5x2 + 3x + 6

6

5

6
5

p(x) = 0



For instance, the graph of , shown here, appears to have
x-intercepts at , , ,  and .

But how do we know if these really are the zeros? Maybe the true values are
slightly different. To verify that those values really are zeros we must check to
see if  for each one. With , for example,

so we can be confident that  truly is a zero.

Finding Rational Zeros of a Polynomial

Rational Zeros Example 1

Let's return to the polynomial  and see how the
rational zeros theorem helps us identify its zeros. Since the leading coefficient is

 and the constant term is , we know that the numerators and denominators
of possible rational zeros must be

This means that all rational zeros of  can be found in
the following list.

p(x) = x5 − 5x3 + 4x
x = −2 x = −1 x = 0 x = 1 x = 2

p(x) = 0 x = −2

p(−2) = (−2)5 − 5(−2)3 + 4(−2)

= −32 + 40 − 8
= 0

x = −2

QUICK CHECK

1. Verify that , ,  and  are each zeros of
.

x = −1 x = 0 x = 1 x = 2
p(x) = x5 − 5x3 + 4x

p(x) = 3x3 + 8x2 + 3x − 2

3 −2

p(x) = 3x3 + 8x2 + 3x − 2



We can see from the graph that  and  are zeros, and both appear in this
list.

Judging from the graph, if the third zero is a rational number then it is either 

or .

To see if either of these are the zeros we put the into the function and see if the
result is zero. We'll start with .

Since  we know that  is the third zero of the polynomial. There's no

need to check  because this polynomial only has three zeros.

Rational Zeros Example 2

Let's use a graph and the rational zeros theorem to see if 
has any rational zeros.

With a leading coefficient of  and a constant term of , we know that all
rational zeros, if there are any, must be in the following list.

−1 −2

1
3

2
3

1
3

p( ) = 3( )
3

+ 8( )
2

+ 3( )− 2

= 3( )+ 8( )+ 1 − 2

= + − 1

= + − 1

= − 1

= 1 − 1
= 0

1

3

1

3

1

3

1

3

1

27

1

9
3

27
8
9

1

9

8

9
9

9

p ( ) = 01
3

1
3

2
3

p(x) = 6x2 + 7x − 5

6 −5



With the help of the graph we can narrow this list down to ,  and , since

the other values are not near the x-intercepts.

Now we need to check each one, beginning with .

We've found one zero! Let's keep going and check .

Since this is not , we move on to our last option, .

From this it's clear that  and  are both zeros of our polynomial. And since

the Fundamental Theorem of Algebra says that a second degree polynomial has
exactly two zeros, we know we have found all of the solutions.
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Finding Real Zeros of a Polynomial

Real Zeros Example 1

There are two other tools we have at our disposal that we shouldn't forget
about. For example, the possible rational zeros of  are

but the graph does not have x-intercepts at  or at .
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It's important remember that the Rational Zeros Theorem only gives us a list of
rational numbers that might be zeros. If none of them work then the zeros are
not fractions.

In this case the two zeros are irrational numbers and can be found with the
Quadratic Formula.

So the first tool we shouldn't forget about is the Quadratic Formula.

Real Zeros Example 2

The second tool that is often helpful is synthetic division. Consider, for instance
the polynomial . The list of possible rational zeros
is huge.

p(x) = 1x2 − 3

± , ±
1
1

3

1

±1 ±3

x =

=

=

=

= ±√3

−b ± √b2 − 4ac

2a
−(0) ±√(0)2 − 4(1)(−3)

2(1)

±√12

2
±2√3

2

p(x) = 6x3 + 7x2 − 16x − 12



By eliminating duplicate values like  and  and looking at the graph

we can trim this list down significantly, but there are still five numbers to check
(listed here in numerical order).

Earlier we plugged the values into the polynomial to check each one. While that
always works, synthetic division can also be used. To show how this works we'll
pick  out of our list and do synthetic division.

Since the remainder is  we know that  is a factor of the polynomial,

which also means that  is a zero.
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Anytime we do synthetic division and end with a remainder of  then we have
found a zero of the polynomial.

Additionally, any other real zeros must be inside the quotient  and
could be found by the quadratic formula. But since our list of rational zeros was
so small, it may be preferable to check the remaining three numbers by
synthetic division before resorting to the quadratic formula.

Starting with , the synthetic division tells us that it is a zero.

Since  is a zero, there's no need to check  and , but we should still look

at .

We conclude that the three zeros of our polynomial are ,  and .

Finding Complex Zeros of a Polynomial

Complex Zeros Example 1

The process we have developed can also find imaginary zeros. This time we'll
examine .

This is a third degree polynomial so it must have three zeros. We can tell right
away from the graph that it only has one real zero, so there must be two that are
imaginary.

0

6x2 − 5x − 6
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3
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3
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2
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3
2

p(x) = 3x3 − 14x2 + 23x − 10



If that real zero is a rational number, then we can find it using the Rational Zeros
Theorem by examining the list of fractions that might be zeros.

Out of that list  appears to be out best choice, so we'll use synthetic division to

check it.

Quotient Remainder

Because the remainder is  we know for sure that  is a zero.

That takes care of our one real zero, but what about the two that are imaginary?
Those are inside the quotient  and we'll get them with the
quadratic formula.
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The two imaginary zeros are  and  and we have now found all three of
the complex zeros of our polynomial.

Complex Zeros Example 2

Our final example  is a fourth degree polynomial
with a very short list of possible rational zeros. The choices are  and  and a
graph quickly shows us that  and  are the likely candidates.

As before we'll check one of these by synthetic division, starting with .

Quotient Remainder

This tells us that  is a zero, but we still have three more to find. The key is to
remember that all the other zeros must be in the quotient . So
now we focus on the quotient and repeat the process.
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= 2 ± i
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6

2 + i 2 − i

p(x) = x4 + x3 − x2 + x − 2
±1 ±2

−2 1

−2

−2
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If  has a rational zero then it is in our original list, so let's try .

Quotient Remainder

Since the remainder is zero, we know  is a zero of the polynomial. The final two
zeros must be inside this new quotient  and we'll use the quadratic
formula to get them out.

We add these two imaginary numbers to our list and can finally say that the four
complex zeros of  are  and .

Summary

Let's take a moment to summarize the process that we have developed. Given a
polynomial, we can attempt to find its complex (real and imaginary) zeros by
working through the following steps.

1. Use the Rational Zeros Theorem to list all possible fractions that might be
zeros.

2. Trim down that list by looking at a graph and eliminating any values that are
not reasonably close to the x-intercepts.

3. Check the remaining values either by testing if  or by performing
synthetic division and seeing if the remainder is zero.

4. Repeat the process for the other zeros or, if the quotient is a 2nd degree
polynomial, apply the quadratic formula.

x3 − x2 + x − 1 1

1
x2 + 1
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2a
−(0) ±√(0)2 − 4(1)(1)
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2
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2

p(x) = x4 + x3 − x2 + x − 2 −2, 1, , −i i

p(x) = 0



Looking Ahead

While the process outlined here will work for all the exercises in the homework,
it is far from being a universal method that will work for every polynomial. For
most problems, in fact, it is not possible to find exact zeros, so we have to find
approximations. There is even an entire field of modern math (numerical
analysis) dedicated to, among other things, constructing algorithms for finding
zeros of equations. And many practical applications in physics, chemistry,
engineering, etc. rely on those computational methods.

In the next section we get a brief glimpse of a few ways polynomials end up
being used in the real world.



Drawings from

Galileo's notebook

showing results of his free

fall experiments, dating

from about 1609.

5.3 Applications of Polynomials

Introduction

Located in the foothills of the Sierra Nevada mountains in the Andalusia region
of Spain, the Alhambra palace is a world heritage site from the 13th century.
Among it's most photographed features today are the water fountains in the
Generalife gardens.

The water that flows out of these fountains follows a curved path through the
air. But it's not just any random curve, it is a parabola!

Projectile Motion

It was Galileo who proved that any object launched into the air will follow the
path of a parabola. This could be water tossed into the air by a fountain or a
ball throw by a child, they all take on the same characteristic arc.

Physicists have studied this for hundreds of years and have discovered several
equations that model the motion of projectiles. In particular, the vertical height
of a projectile (in meters) can be written as a function of time

where  is vertical velocity (in meters per second),  is the initial height (in
meters) and  is the time (in seconds).

2 9
29

h(t) = −4.9t2 + vt + h

v h
t

Photo by granadandyou from Pixabay

https://www.mpiwg-berlin.mpg.de/Galileo_Prototype/HTML/F116_V/F116_V.HTM
https://pixabay.com/images/id-3111770/


Finding the Vertex of a Parabola

One place where projectile motion is used is in the sport of pumpkin chuckin',
where teams build slingshots, catapults or air cannons (like the one below) to
throw pumpkins as far as possible.

If pumpkins leave the barrel of this air cannon 6.4 meters above the ground with
a vertical velocity of 170 meters per second, then the height at any time is given
by

QUICK CHECK

Suppose the skier in this photo leaves the jump with a vertical velocity of
 meters per second from a initial height of  meters. Write an function

that models their height, assuming the jump follows projectile motion.
2 70

h(t) = −4.9t2 + 170t + 6.4

Photo by Petri Damstén on Flickr

Photos by Clark on Flickr

https://flic.kr/p/qTmpXd
https://flic.kr/p/nYqovU


The obvious question

of how far the cannon can

shoot a pumpkin is,

unfortunately, not one we

can solve with this

function.

Distance depends on the

launch angle and you have

to use trigonometry to find

it. But to give you some

idea, the current world

record is well over one

mile!

Our model gives the height at any time, so only questions involving height and
time are fair game. The two that come to mind are determining when the
pumpkin will come back down and hit the ground and finding its maximum
height.

Graphing our function will give us a better idea of where to look for the answers.

maximum height

launched hits ground

The pumpkin will come back down and hit the ground when the height is ,
which means we need to find the zeros of the function. All that needs to be done
is to solve  using the quadratic formula like we've done
before.

Of the two values the only one that makes physical sense is  seconds,
which also matches the value in our graph.

The maximum height occurs at the peak of the graph which, for a parabola, is
called the vertex. Due to symmetry, the vertex always occurs halfway between
the two x-intercepts. In other words, if  and  are the two x-intercepts, then

the x-coordinate of the vertex is .

For our particular pumpkin cannon function  which
had x-intercepts of  and , the x-coordinate of the vertex is

3 0
30

0

0 = −4.9t2 + 170t + 6.4

t =

=

=

= −0.0376 and 34.731 seconds

−b ± √b2 − 4ac

2a
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−170 ± √29025.44
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x1 x2
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2
−0.0376 + 34.731
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So our maximum height occurs  seconds after launch.

To figure out what that height is, we put this time into the function

and find that the maximum height is  meters.

Using the x-intercepts to find the vertex always works, but there is a faster
method.

If your function is quadratic polynomial written as , then

the x-coordinate of the vertex is always  and the y-coordinate is

.

Let's go back to the pumpkin function  and see how
this works.

The x-coordinate of the vertex is found by computing

which is the same value as before, but we did not need to go through the
quadratic formula to find the two zeros and locate the halfway point between
them.

Getting the y-coordinate of the vertex is exactly the same as before, we just
evaluate the function when .

This technique for finding the vertex works on any quadratic function, not just
with projectile motion. One thing to keep in mind, however, is that the vertex is
not always a maximum. Depending on the shape of the parabola it could be a
minimum.

17.347

h(t) = −4.9t2 + 170t + 6.4

h(17.347) = −4.9(17.347)2 + 170(17.347) + 6.4

= 1480.9 meters

1480.9

f(x) = ax2 + bx + c

xv = −b
2a

yv = f(xv)

h(t) = −4.9t2 + 170t + 6.4

xv =

=

= 17.347

−b

2a
−170

(2)(−4.9)

x = 17.347

yv = f(xv)

= f(17.347)

= −4.9(17.347)2 + 170(17.347) + 6.4

= 1480.9 meters



Solving Quadratic Equations

QUICK CHECK

Suppose the motorcyclist in this photo leaves the ramp with a vertical
velocity of 14 meters per second from a initial height of 2 meters. Write an
function that models their height, assuming the jump follows projectile
motion. Then find their maximum height by locating the vertex of your
function.

Photo by Jeremy Taylor on Flickr

Saltos Red Bull en Bilbao 2015 by jamoral, on Flickr

https://flic.kr/p/fSS3UB
https://www.flickr.com/photos/jamoral/21713225096/


Red BRed B……

Cliff diving is potentially a very dangerous sport. One maneuver that makes it a
bit safer is called a barani. 

The barani is a gymnastics move that combines a half somersault with a half
twist. Performing a barani gives the diver time to see the water and control their
landing so that they hit the water feet first.

Assuming a professional cliff diver can jump up with a vertical velocity of 
meters per second, then the projectile motion function

gives us their height above the water  seconds after diving off the  meter
platform.

If a diver can complete a barani about 5 meters above the surface of the water,
then the chance of a safe dive is very high. How much time does that give them
to do their flips and twists?

To answer this we have to find  so that . Setting up the equation we
find that

which is another situation for the quadratic formula.

Clearly  seconds can't be our answer, so it must be that the diver has
 seconds to do their dive and complete the barani.

3 1
31

3

h(t) = −4.9t2 + 3t + 27

t 27

t h(t) = 5

h(t) = 5 Original equation

−4.9t2 + 3t + 27 = 5 Insert equation for h(t)

−4.9t2 + 3t + 22 = 0 Subtract 5

t = Apply Quadratic Formula

t = Simplify

t = −1.84 and 2.45 seconds  Evaluate

−(3) ±√(3)2 − 4(−4.9)(22)

2(−4.9)

−3 ± √440.2
−9.8

t = −1.84
2.45

QUICK CHECK

Assuming the diver completes their barani after  seconds, how much
longer will it take before they hit the water?

2.45

https://www.youtube.com/watch?v=tx2ZgKYS-Yc


5.4 Rational Functions

Introduction

Some observable characteristics, such as eye and hair color, are controlled by
genes that pass from parent to child. It's not unusual for a trait to skip
generations and appear to pop up out of nowhere. For instance, two people who
don't have red hair can have redheaded children, or someone might have blue
eyes even if both parents have brown eyes.

Since rational functions are built with polynomials, they inherit some of the
same behaviors as their "parents", the polynomials. But rational functions also
have several properties that polynomials do not have.

Rational Functions

In Chapter 4 we saw that dividing two polynomials  and  resulted in a new
type of function called a rational function.

The graphs of rational functions have some of the most complicated behavior
we have seen so far.

n d

r(x) =
n(x)

d(x)

Photo by Erik Mclean on Unsplash

http://localhost:1313/chapter-4/4.2/#rational-functions
https://unsplash.com/photos/oPWGhqBPNI0


As you can see from these examples, rational functions often have x-intercepts,
a property they share with polynomials, but they can also have vertical and
horizonal asymptotes, two things polynomials never have. There is even a
entirely new behavior that we have not seen before that seems to pop up almost
out of nowhere.

Zeros

Rational functions inherit their zero behavior from the polynomial in the
numerator. You can explore this in the figure below. Look carefully at the link
between the location of the zero and the factors in the numerator.

To use the interactive figure visit https://www.geogebra.org/m/hrgyn3qw

http://localhost:1313/chapter-1/1.3/#asymptotes
http://localhost:1313/chapter-1/1.3/#asymptotes
https://www.geogebra.org/m/hrgyn3qw
https://www.geogebra.org/m/hrgyn3qw
https://www.geogebra.org/m/hrgyn3qw


Vertical Asymptotes

The vertical asymptotes of a rational function are caused by the polynomial in
the denominator. In the figure below you can move the vertical asymptotes
(indicated by the dotted lines). Look for a connection between the location of the
vertical asymptotes and the factors in the denominator.

To use the interactive figure visit https://www.geogebra.org/m/ssgbhywx

QUICK CHECK

1. How can you find the x-intercepts of a rational function by looking at
its equation?

QUICK CHECK

1. How can you tell if a rational function has a vertical asymptote, just by
looking at its equation?

https://www.geogebra.org/m/ssgbhywx
https://www.geogebra.org/m/ssgbhywx
https://www.geogebra.org/m/ssgbhywx


Removable Discontinuities

So far we've determined that zeros in the numerator cause x-intercepts while
zeros in the denominator cause vertical asymptotes. But what would happen if
there was a zero in both at the same place?

Or to ask the question another way, what is ? One thought is that it should

equal , since a number divided by itself is . Another argument is that it should
be , since  divided by any number is .

But if we look back at what division means it gets even more complicated.
Remember that  means .

Then  would mean , but that's true for every number! Since
there's no single well defined way to say what  equals, we leave it
undefined.

So whenever we have a rational function that has matching factors in the
numerator and denominator, the graph is undefined at that point and there is a
hole or break in the graph. The official term is "removable discontinuity".

In the figure below you can change the locations of the zero, the vertical
asymptote, and the hole.

To use the interactive figure visit https://www.geogebra.org/m/ntYzprQz

0
0

1 1
0 0 0

a ÷ b = x a = b × x

0 ÷ 0 = x 0 = 0 × x
0 ÷ 0

https://www.geogebra.org/m/ntYzprQz
https://www.geogebra.org/m/ntYzprQz
https://www.geogebra.org/m/ntYzprQz


Horizontal Asymptotes

In addition to x-intercepts, vertical asymptotes and holes, rational functions
often have horizontal asymptotes.

Recall that a horizontal asymptote is a long-term behavior, describing how the
function levels off as . Since the long-term behavior of a polynomial is
controlled by the degree and leading coefficient, we should focus our attention
on the degree and leading coefficients of the polynomials that make up a
rational function.

In this first figure both polynomials have the same degree. Adjust the leading
coefficients and see how that impacts the location of the horizontal asymptote.

To use the interactive figure visit https://www.geogebra.org/m/u76wmebr

As you've just seen, if the degrees match then you can simplify the leading
coefficients to find the horizontal asymptote.

QUICK CHECK

1. Identify all of the x-intercepts, vertical asymptotes and holes of the
rational function

2. Write an equation for a rational function that has a zero at , a
vertical asymptote at , and a hole at .

r(x) =
(x − 5)(x + 3)(x − 1)

(x − 2)(x − 7)(x − 1)

x = 2
x = 11 x = 4

x → ±∞

https://www.geogebra.org/m/u76wmebr
https://www.geogebra.org/m/u76wmebr
https://www.geogebra.org/m/u76wmebr


But what if the degrees do not match? In this figure you can alter the degree of
each polynomial.

To use the interactive figure visit https://www.geogebra.org/m/prrwdbcz

If the degree of the numerator is larger, then no horizontal asymptote exists.
However, if the degree of the denominator is larger, the horizontal asymptote is
automatically at  (i.e. the x-axis).y = 0

QUICK CHECK

1. What is the horizontal asymptote of this rational function?

2. What is the horizontal asymptote of this rational function?

3. What is the horizontal asymptote of this rational function?

r(x) =
10x3 + 4

2x3 − 8x2

r(x) =
5x − 2

3x2 + 97x + 13

r(x) =
x6974 + 1

x3827 − 4x

https://www.geogebra.org/m/prrwdbcz
https://www.geogebra.org/m/prrwdbcz
https://www.geogebra.org/m/prrwdbcz


6.1 Concepts of Modeling

Introduction

Every spring, hundreds of people come to the Great Plains region of the United
States in an attempt to get as close as possible to one of nature's most violent
events: a tornado. While some go to "Tornado Alley" just for the thrill, most
professional storm chasers have a different goal. What they want is data:
scientific measurements that can only be found inside real tornadoes.

Scientists and university researchers, like those at NOAA's National Severe
Storms Laboratory, hope to use that data to create mathematical models that
will help them understand the inner workings of tornadoes and how they form.

The Modeling Process

When we speak of creating a mathematical model, what exactly are we talking
about?

A model is simplified representation of a real world object. Mathematical models
are found in nearly every field of study and are useful when it is not feasible,
economical, practical, or safe to work with the real item.

To construct a model, we begin with a set of data points and a description of the
scenario and then try to find an equation of a function that closely aligns with
our observations and what we know about the situation.

Once a model has been created, we can use the rules of mathematics to
discover things about its mathematical behavior. The insights gained from these
analyses can, in turn, be used to make predictions and gain understanding
about how the real-world object might behave.

Tornado photo by Nikolas Noonan on Unsplash

https://unsplash.com/photos/fQM8cbGY6iQ


See the paper by Olivia

Kellner and Dev Niyogi in

the American

Meteorological Society's

Earth Interactions journal,

volume 18 no. 10 (2014).

Real-World
Problem

Mathematical
Conclusions

Mathematical
Model

Real-World
Predictions

Through continued observations and adjustments, the model can be refined to
more accurately represent the real-world phenomenon it is intended to
simulate.

While our models will never be perfect, there is a good chance that they might
be accurate enough to be genuinely useful. Renowned physicist Eugene Wigner
referred to the predictive nature of mathematics, especially in the natural
sciences, as the "unreasonable effectiveness of mathematics." This theme will be
prevalent throughout this chapter.

Scatterplots

Many physical laws, like the law of gravity, were discovered by gathering data
and looking for patterns. One of our primary tools for visualizing data is the
scatterplot. A scatterplot is nothing more than pairs of data plotted as points
on a grid.

For instance, researchers from Purdue University analyzed 1285 tornadoes in
Indiana from 1950 to 2012. One set of data compared the number of
tornadoes observed at different hours of the day. The scatterplot below
illustrates this data.
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https://doi.org/10.1175/2013EI000548.1
https://doi.org/10.1175/2013EI000548.1
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https://doi.org/10.1175/2013EI000548.1
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The scatterplot reveals a distinct pattern, suggesting that most tornadoes form
late in the afternoon. This is a well-known result that follows from the fact that,
by mid-afternoon, the sun has sufficiently heated the ground and atmosphere
enough to produce thunderstorms.

Notice that there is a subtle but important difference between the data (black
dots) and the model (the red curve). The model allows us to make predictions for
values that were not recorded. For instance, no data point corresponds to
10:15am, but using the model we can say the number is likely to be around 20
tornadoes.

Interpolation and Extrapolation

Models can be used to make estimations in two different ways. Making a
prediction outside of a data set is called extrapolation. Estimating a value that
is in between known values is interpolation.

For instance, if we knew the number of tornadoes in 1900 and in 2000,
predicting how many will occur in 2050 would be an extrapolation since that
value lies beyond the known data. Extrapolation assumes that an existing trend
will continue unchanged into the future, which is not always guaranteed.

On the other hand, estimating the number of tornadoes in the year 1950 would
be interpolation since 1950 falls between the known values.

QUICK CHECK

Suppose that we know the price of a movie ticket in 2000 and also the
price in 2010, but no other years. Decide if the following would be
examples of interpolation or extrapolation.

1. Predicting what the cost of a movie ticket will be in 2050.

2. Estimating what the cost of a movie ticket was in 2005.

3. Estimating what the cost of a movie ticket was in 1920.



Another Tornado Data Set

Let's take a look at another set of tornado data, showing how closely tornadoes
occur to populated areas.

To use the interactive figure visit https://www.geogebra.org/m/j64zgw6h

This scatterplot reveals a strong linear trend, indicating that the percentage of
observed tornadoes increases as one moves further away from the city or town
center. The equation  serves a good model for the data.

If we use our model to extrapolate back to a distance of  kilometers it suggests
that there is a  chance of seeing a tornado, which might lead to the
assumption that people in cities are safer than those in rural areas. That
conclusion, however, needs to be approached with caution since many other
factors may come into play.

Contrary to what one might think, tornadoes are not diverted by structures or
buildings. They have been know to hit large cities, pass over rivers, climb hills
and cross canyons.

Research even suggests that slower winds and hotter air in urban areas can
actually increase the tornado-genesis process. According to NOAA's tornado
safety guidelines, the safest place is in a fortified tornado shelter.

This example serves as a valuable lesson that even when data displays an
apparent pattern, it is crucial to take time to investigate and consider other
underlying factors before we make predictions or draw conclusions from our
model.

Independent and Dependent Variables

In all of the tornado data sets we've seen, it was up to the researchers to decide
which variable was independent and which was dependent.

Whenever we work with a raw set of data, it will be up to us to do the same thing
and determine which quantity is the independent and which one is dependent.

The independent variable is the parameter that changes or controls the other
variable, and it is often plotted on the x-axis of a graph.

y = 2.84x + 0.14

0
0%

https://www.geogebra.org/m/j64zgw6h
https://www.geogebra.org/m/j64zgw6h
https://www.geogebra.org/m/j64zgw6h
https://www.spc.noaa.gov/faq/tornado/#Safety


On the other hand, the dependent variable is the outcome or response that is
measured or observed as the independent variable changes, and it is typically
plotted on the y-axis of a graph.

Often, certain variables are naturally independent or dependent based on our
knowledge of the situation. For example, suppose researchers collect data on
the dosage of a medication given to patients and their corresponding blood
pressure measurements. Since researchers control the dosage, it would be
considered the independent variable. Blood pressure, on the other hand, is
expected to change in response to the dosage level, so it should be the
dependent variable.

Aligning and Scaling Data

To make the data more manageable and relatable, we often use aligning and
scaling techniques.

Aligning the data involves shifting the independent variable to a more
convenient starting point. Scaling the data allows us to convert the units of the
dependent variable to a more practical scale.

Let's look at an example where both of these might be helpful. The table below
shows the total number of mobile game downloads on iOS and Android from
2015 to 2022.

Year Downloads

2015 24,300,000,000

2016 27,900,000,000

2017 34,700,000,000

2018 38,400,000,000

2019 42,100,000,000

2020 56,200,000,000

2021 55,300,000,000

2022 55,600,000,000

QUICK CHECK

1. In an experiment, data is collected on the amount of sunlight and the
harvest yield of a tomato plant. Which variable would be considered
dependent?

2. If the speed of a rocket is your dependent variable, what kinds of
things might be reasonable independent variables?

3. In 1662, scientist Robert Boyle investigated the relationship between
pressure and volume in a gas. Which variable do you think he used as
the independent one?



Since 2015 is a convenient starting point, we can align this data by converting
the time to "years since 2015". This is done by subtracting 2015 from each year,
resulting in the aligned years 0, 1, 2, ..., 7.

Next, we might want to scale the number of downloads so that 1 on the graph
represents "1 billion downloads". We can do this by dividing each value by
1,000,000,000.

After aligning and scaling our data table has the same information but with more
manageable values. Notice how the labels of each column have been updated to
reflect those changes.

Year Since 2015 Billions of Downloads

0 24.3

1 27.9

2 34.7

3 38.4

4 42.1

5 56.2

6 55.3

7 55.6

Not only is the aligned and scaled data easier to read, it is also much easier to
graph in a scatterplot.
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Modeling with Transformations

You might have noticed that the mobile game data above roughly has the shape
of a line. If we find that a set of data has a shape similar to one of our basic
functions, then transformations can be used to shift and stretch that function to
make align with the data.

Let's start by looking at a few transformed functions that you might have seen in
prior algebra classes.

Slope-Intercept Form of a Line

To begin, we take the identity function  and stretch it vertically by a
factor of  and shift it vertically  units. The resulting equation, , is
known as the slope-intercept form for a line, where  is the slope and  is the
y-intercept. The figure below will let you experiment with this equation.

QUICK CHECK

1. Suppose you have data on housing prices from 1956 through 1974.
What would be a convenient starting point and how would you align
your data?

2. Suppose you were looking at data involving the national debt, which
was $31,419,689,421,557.90 at the end of 2022. How might you scale
the data to make it more manageable?

f(x) = x

m b y = mx + b
m b



To use the interactive figure visit https://www.geogebra.org/m/hBQsE4O1

Point-Slope Form of a Line

Another transformed version of the identity function is .

This new equation involves a horizontal shift  spaces, a vertical stretch by ,
and a vertical shift  units.

The result is a line that passes through the point  and has a slope of .
We refer to this equation as the point-slope form of a line. Feel free to
experiment with this equation using the figure below.

To use the interactive figure visit https://www.geogebra.org/m/PdeIue6n

Vertex Form of a Quadratic

Lastly, consider , which is a transformed version of the square
function.

The horizontal and vertical shifts move the vertex to the point  while the
vertical stretch by a factor of  influences the concavity of the graph.

This equation is often referred to as the vertex form of a quadratic function.
You can identify the three transformations in the figure below.

y = m(x − x1) + y1

x1 m
y1

(x1, y1) m

y = a(x − h)2 + k

(h, k)
a

https://www.geogebra.org/m/hBQsE4O1
https://www.geogebra.org/m/hBQsE4O1
https://www.geogebra.org/m/hBQsE4O1
https://www.geogebra.org/m/PdeIue6n
https://www.geogebra.org/m/PdeIue6n
https://www.geogebra.org/m/PdeIue6n


To use the interactive figure visit https://www.geogebra.org/m/uTrJWh1K

Example: Apple Prices

To demonstrate how all this works together, let's use the following raw data
from the U.S. Department of Agriculture.

Step 1: Choosing Variables

With this data, it seems reasonable that the year is independent and the price is
dependent.

Step 2: Aligning and Scaling Data

To avoid a graph that spans  units, we choose to align the years by
converting them to "years since 2000". This is done by subtracting  from
each year.

And we might want to convert the price to "dollars per pound" rather than cents
per pound. To do this we'll change the scale of the prices by dividing each price
by .

The result of aligning the years and scaling the prices is shown below.

QUICK CHECK

1. Write the equation of a line with a slope of  and a y-intercept of .

2. Write the equation for a line passing through the point  that has
a slope of .

3. Write the equation for any quadratic function with a vertex at .

2 3

(3, 5)
4

(2, −1)

2009
2000

100

https://www.geogebra.org/m/uTrJWh1K
https://www.geogebra.org/m/uTrJWh1K
https://www.geogebra.org/m/uTrJWh1K


Step 3: Using a Scatterplot to Choose a Function

Now that we have aligned and scaled the apple data, let's examine the
scatterplot and compare its shape with the shapes of the six basic functions that
we know.

Does the data look like the identity function or the square function? Perhaps it
looks like the reciprocal or the cube root function?

Since this data appears linear, we should be able to model it with a transformed
version of the identity function . For simplicity, we will use the slope-
intercept form of a line  but the point-slope form could be used as
well.

Step 4: Using Transformations to Fit the Function to the

Data

All that remains is to find values of  and  that make the model fit the data as
closely as possible.

In the figure below, you are free to change both the slope  and the y-intercept
 until you find a line that fits the data. Make a note of your equation before

continuing.

f(x) = x
y = mx + b

m b

m
b



To use the interactive figure visit https://www.geogebra.org/m/m9XFVxlH

You may have had trouble finding just one line that fit well. In fact, good
arguments could be made for several lines. However, the line that is as close as
possible to each point is the line .

Where did this equation come from, and how do we know it is the best? Well,
that's a great question would take a few weeks in a statistics course to explain
fully. For now, it's enough to know that most graphing utilities have programs
that fit equations to data. That process is called least squares regression and we
will look at it later in this chapter.

Step 5: Constructing the Model

Now that we have an equation, , it's time to turn that into an
actual model.

A model is not just an equation or function, it also includes a description of the
variables and their units of measure. Without an accurate description, the
function itself is meaningless since there would be no way to relate it to the real
world.

Since our independent variable is time in years since , we take the liberty of
using  in place of .

Similarly, using  instead of  will help us remember that the dependent variable
represents the price of apples. We are now ready to write our model.

According to data provided by the U.S. Department of Agriculture, the price  of

apples per pound in dollars can be modeled by the function

where  is the time in years since 2000.

Step 6: Using the Model to Make Predictions

We can use this model to estimate the price of apples in any year we want. For
example, to predict the price of a pound of apples in the year 2030 we simply
evaluate the function for  (remember,  is years since 2000.)

y = 0.04x + 0.86

y = 0.04x + 0.86

2000
t x

p y

p

p(t) = 0.04t + 0.86

t

t = 30 t

p(30) = 0.04(30) + 0.86 = 2.06

https://www.geogebra.org/m/m9XFVxlH
https://www.geogebra.org/m/m9XFVxlH
https://www.geogebra.org/m/m9XFVxlH


Thus, our model predicts the average price of a pound of apples will be $2.06 in
the year 2030. How accurate is that? We'll have to wait and see.

Modeling with Piecewise-Defined Functions

The Pompidou Center in Paris has an amazing escalator. Designed by Italian
architect Renzo Piano and British designer Richard Rogers, the 6 story escalator
is encased in a glass tube and attached to the outside of the building!

The Pompidou escalator is not a single straight line, but rather several small
lines pieced together. It's an example of a new type of function which we'll call
piecewise-defined functions. For instance, to model the Pompidou escalator
we shift and stretch several pieces of the identity function and connect them
together with horizontal line segments.

Piecewise-defined functions, such as this, give us a lot more flexibility when
creating models. No longer are we required to find a single function; we are now
free to construct models in multiple pieces.

When writing piecewise functions, we list the equations for each piece and then
specify where each is used. Consider, for example, the path a bounding ball.

Photo by Yann Caradec on Flickr

https://www.flickr.com/photos/la_bretagne_a_paris/5995530090


Each bounce is an individual parabola, with its own equation, and its own limited
domain. The piecewise function for this particular ball is

To find a value such as , we first compare our x-value  with the three
inequalities. Since  would fit in , we must use the second equation.
Thus, .

Looking Ahead

In the final two sections of this book, we will approach mathematical modeling
from two different perspectives.

In 6.2 we will have limited data and will need to find a suitable model based on
descriptions of the situation and our knowledge of how linear, power, and
exponential functions behave.

In last section we will explore the practical application of using graphing utilities
to create scatterplots and find functions that best fit the data.

Throughout it all, remember that while models are powerful tools, they are not
infallible. Careful consideration of underlying factors is crucial for drawing
meaningful insights and making accurate predictions.

f(x) =
⎧
⎨⎩

−(x + 2)(x − 2) if  0 ≤ x ≤ 2
−1.2(x − 2)(x − 5) if  2 < x ≤ 5
−1.8(x − 5)(x − 7) if  5 < x ≤ 7

f(4) 4
4 2 < x ≤ 5

f(4) = −1.2(4 − 2)(4 − 5) = 2.4

QUICK CHECK

Use the piecewise function above to evaluate the following:

1. 

2. 

3. 

f(0)

f(2)

f(6)

http://chapter-6/6.2
http://chapter-6/6.3


6.2 Algebraic Methods for Modeling

Introduction

Many people are concerned about the amount of mercury they ingest by eating
certain species of large fish like shark, swordfish, and tuna. Mercury levels in
large fish can be over a million times higher than that found in the surrounding
waters, posing a possible health risk.

An accurate mathematical model could help people understand those concerns
and make informed decisions. Fortunately, the elimination of substances like
mercury from the body are known to have biological half-lives, and we know that
half-lives can be modeled with exponential functions.

In this section we'll will point out key words and phrases, like "half-life", that
indicate a scenario might be modeled by a particular type of function. We'll also
cover algebraic methods for finding those equations.

Identifying Functions from Descriptions

Linear Functions: Constant Rates

When we studied how functions change in Chapter 1, we saw that the average
rate of change formula was nothing more than the slope formula rewritten with
function notation.

Since the slope of a line remains consistent throughout, the key to identifying a
linear function is to spot a constant rate of change.

It helps to remember that a rate is ratio of two quantities. Such rates are often
described using the word per (miles per gallon, servings per package, dollars per
hour, feet per second) or something equivalent (two tickets for each person, ten-
thousand steps every day, etc.).

Image by Design n Print from Pixabay
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Whatever that constant rate of change is, it will be the slope of the linear
function.

Power Functions: Proportional Changes

Back in Chapter 2 when we introduced the ideas of direct and inverse
proportionality, all the examples explicitly stated the type of proportionality.
Without specific guidance like that, we'll need to look for other clues.

Specifically, if two quantities increase or decrease together, then they might vary
directly. On the other hand, if one goes up while the other goes down, then they
could vary inversely.

While those behaviors don't exclusively belong to power functions, they do
indicate that a power function should be considered.

Exponential Functions: Constant Percentages

As we saw in Chapter 3 exponential functions often appear in scenarios involving
growth or decay that follows a multiplicative pattern.

A distinguishing features of exponential functions is that they involve a constant
percentage change over equal intervals. Almost without exception, if a
constant percent change is mentioned within a certain time frame, then the
scenario is likely exponential in nature.

Writing Functions from Descriptions

Once we've chosen a function model that seems to fit the description, the next
task is to write the equation of that function.

If a starting value is given, then the equations for linear and exponential
functions can generally be written without much trouble. Power functions will
require two known values, so we'll delay looking at them for a moment.

QUICK CHECK

Identify the type of function (linear, power, or exponential) that would
likely be the best model for each scenario.

1. A bacteria culture doubles every  hours.

2. The cost of an Uber ride increases  per mile.

3. The slower you drive the longer it takes to arrive at your destination.

4. The more horsepower a car has the faster it accelerates.

5. A job offers  raises every year.

6. A person spends  each day on a bus pass.

8
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Writing Linear Functions

As we saw in the previous section, the slope-intercept form of a linear function
is , where  is the slope and  is the y-intercept.

To pull the slope and y-intercept out of a description, look for the following:

The slope  is the constant rate of change of the function.
The y-intercept  is a starting value, which is the value of  when .

For instance, suppose a gym has an initial sign-up fee of  and monthly
membership fee of . In this scenario, the initial sign-up fee is the y-intercept
and the monthly fee is the slope. Using  and  the equation of the
linear function is:

This linear function allows us to calculate the total cost of the gym membership
based on the number of months ( ).

Writing Exponential Functions

In Chapter 3 we learned that the general form of an exponential function is
, where  is the initial value (or starting amount) and  is the base

(growth/decay factor).

So, much like a linear function, we only need two parameters to write the
equation of an exponential function. To extract these from a description, look
for the following:

The initial value  is the value of  when . It represents the
starting point of the exponential growth or decay.
The base  is the factor by which  changes for each unit change in . If

, it represents exponential growth; if , it represents
exponential decay. If a percentage rate  is given then the base is

 for growth and  for decay. If the change takes 
units to occur, then  should be divided by , which is how we obtained
the half-life and doubling-time equations.

As a simple example, suppose an aspiring social influencer has  followers
and expects that number to grow by  every month. Then 
allows us the calculate how many followers they have after  months.

y = mx + b m b

m
b y x = 0

$50
$20

m = 20 b = 50

y = 20x + 50

x

y = abx a b

a y x = 0

b y x
b > 1 0 < b < 1

r
b = 1 + r b = 1 − r c

x c

400
3% y = 400(1.03)x

x

QUICK CHECK

1. Suppose a different gym has a  initial fee and  monthly dues.
Write an equation for the total cost.

2. Suppose the aspiring social influencer above realizes their number of
followers increases by  every  months. Write an equation for the
number of followers they have after  months.

$75 $10

3% 2
x
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Creating Functions from Two Points

In many cases we may have to determine the parameters of a function from two
pairs of data. This can apply to any of the three types of functions we're looking
at in this section.

Find a Linear Function from Two Points

The first step in finding a linear function through two points is to use the slope
formula

Once we have the slope in hand we can finish the process with either the point-
slope form or the slope-intercept form. Many people prefer the slope-intercept
form since it is more familiar, but the point-slope form is actually easier to work
with. We'll do the same example both ways and you can decide for yourself.

For our example, let's use the points  as  and  as .
We'll start with the slope

To finish this with the slope-intercept form we need to find the y-intercept .
This is done by taking putting the coordinates of either point into the equation
and solving for . We will use  and, of course, .

We now have  as our linear model in the slope-intercept form.

Since the point-slope form only requires the coordinates of a point and the
slope, we can get the equation just by substituting. Here we will also use 

and .

We now have  as our linear model in the point-slope form. It

is important to point out that these are the same exact equation, just in
different formats. This can be seen clearly if we start with point-slope form,
distribute the slope and simplify.

m =
y2 − y1

x2 − x1

(2, 5) (x1, y1) (6, −1) (x2, y2)

m = slope formula

= insert coordinates of the two points

= evaluate the subtractions

= − reduce the fraction

y2 − y1

x2 − x1

−1 − 5
6 − 2

−6
4
3

2

b

b (2, 5) m =
−3
2

y = mx + b slope-intercept form

5 = − (2) + b insert the slope and the coordinates of the point

5 = −3 + b simplify

8 = b add 3 to both sides

3

2

y = − x + 83
2

(2, 5)

m = −3
2

y = m(x − x1) + y1 point-slope form

y = − (x − 2) + 5 insert the slope and the coordinates of the point
3

2

y = − (x − 2) + 53
2



The end result is the same slope-intercept form we found earlier. This process
can always be used to find a line through any two points, provided both points
have different -coordinates. If the points have the same -coordinate then we
cannot create a linear function since those points would not pass the vertical
line test.

Find a Power Function from Two Points

Suppose we are asked to find a standard power function through the points
 and . Since power functions are not lines, we cannot use the slope

formula and must employ different techniques.

One thing that will help is remembering that each point has an  and a 
coordinate. Substituting those values into the standard power function equation

 will give us a pair of equations to work with.

Since there are two unknown values,  and , we need to eliminate one of them
in order to solve for the other. Notice that if we form a ratio of our equations
then 's will cancel. That's our first step.

With  out of the way momentarily, we can focus on finding . Since  is in the
exponent, we'll need to use logarithms to find it.

y = − (x − 2) + 5 point-slope form

y = (− ⋅ x)− (− ⋅ 2)+ 5 distribute the slope

y = − x + 3 + 5 simplify the multiplication

y = − x + 8 simplify the addition

3

2
3

2

3

2
3

2
3

2

x x

(6, 10) (2, 5)

x y = f(x)

f(x) = kxp

k p

k

= Form a ratio of the two equations.

= Cancel k's.

= ( )
p

Use the rule  = ( )
x

.

2 = 3p Reduce the fractions.

10

5

k(6)p

k(2)p

10

5

6p

2p

10

5

6
2

ax

bx
a

b

k p p

ln(2) = ln(3p) Apply a logarithm to both sides.

ln(2) = p ⋅ ln(3) Use the power rule for logarithms.

= p Divide to isolate p.

p ≈ 0.6309 Decimal approximation.

ln(2)

ln(3)



By putting  back into either of our original two equations we'll be
able to determine .

With both  and  in hand, we can now write the equation for our power
function.

Keep in mind that, since power functions generally exist only when , we
should check that both -coordinates are positive before starting this process.
Additionally, since logarithms were involved in our solving process, the two -
coordinates should be non-zero and have the same sign. For the most part,
expect to find power functions only when both points are in the first quadrant.

Find an Exponential Function from Two Points

Suppose we are asked to find an exponential function that passes through the
points  and , how is that done? The process begins the same way it
did with a power function--inserting the coordinates into the standard
exponential function  to make two equations.

Forming a ratio the two equations worked before, so let's try that again. We'll
put the equation with the larger numbers on top, which should help us reduce
fractions along the way.

p = 0.6309
k

10 = k(6)p Choose one of the original equations.

10 = k(6)0.6309 Substitute p = 0.6309

10 = k ⋅ 3.097 Evaluate the power.

= k Divide both sides by 3.097

k = 3.229 Evaluate the division.

10

3.097

k p

f(x) = 3.229x0.6309

x > 0
x

y

(1, 12) (3, 27)

f(x) = a bx

= Form the ratio of the two equations.

= Cancel the a's.

= b2 Simplify the powers.

= b2 Reduce the fraction.

±√ = b Take ±√  of both sides

± = b Simplify

27

12

a b3

a b1

27

12

b3

b1

27

12
9
4
9
4
3

2



Normally getting two answers could cause a problem, but in this case we know
something extra. We are trying to find the base of an exponential function, and
the base of an exponential is never negative. So the correct value must be 

.

This is only half of the solution; we also need to know what  is. To find that,
we'll substitute  back into one of our equations. As before, either one will work
but we'll choose the one with the lower values in it--it's just is a bit simpler.

Now that we know the values for  and , we can finally say that

is the exponential function that passes through the points  and .

Convert Between Exponential Models

In the previous example we used the standard exponential model ,
where , but we know from Chapter 3 that there are several different
exponential forms. Why didn't we use one of those?

The answer is that we certainly could have. The format we use doesn't really
matter since its possible to switch between any of them. In particular, the
standard model  and the continuous growth model  are
equivalent (and are the most commonly used). Here's how you convert from one
to the other.

Either form can be used for any application. We often make the decision based
on convenience and whether its preferable to emphasize the growth factor  or
the continuous growth rate  in a given scenario.

b = 3
2

a
b

12 = a b1 Equation #1

12 = a Substitute b =

⋅ 12 = a Multiply by 

8 = a Simplify

3

2
3

2

2

3
2

3

a b

f(x) = 8( )
x

3

2

(1, 12) (3, 27)

f(x) = a bx

b = 1 + r

f(x) = a bx f(t) = a ekt

a b x
⟹ a e k t by setting k = ln(b)

a e k t
⟹ a b x by setting b = e k

b
k

QUICK CHECK

1. Use the identity  to rewrite  in the standard
exponential model form .

2. Use the identity  to rewrite  as a

continuous growth exponential function of the form .

b = ek f(t) = 2 e−0.356t

f(x) = a bx

k = ln(b) f(x) = 138(1.493)x

f(t) = a ekt

http://chapter-3/3.2#looking-ahead
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Create Exponential Models

Continuous Biological Decay

Let's return to the example that at the start of this section. The Mercury that
small fish eat gets collectected in large predatory fish such as shark, swordfish,
and tuna that live longer. Mercury levels in large fish can be over a million
times higher than that found in the surrounding waters.

The U. S. Environmental Protection Agency (EPA) believes that if a person has a
blood mercury level under 5.8 micrograms per liter ( g/L) then they are
relatively safe and should see no adverse effects.

Suppose the Mercury level in your blood is at 15 g/L. If 5 days later it has only
dropped to 14 g/L, how long will it take to reach a safe level?

If we assume mercury leaves your body in a continuous fashion, then we can try
to find a model of the form . From the information given we can find

 by solving .

From this we see that the mercury concentration can be modeled by
.

3 3
33

μ

μ
μ

f(t) = aekt

k 14 = 15ek 5

14 =15ek 5

= e5 k Divide both sides by 15 to isolate the exponential.

ln( ) = ln(e5k) Apply the natural log ln to both sides.

ln( ) = 5k Use the inverse relationship ln(ex) = x.

= k Divide both sides by 5.

k ≈ −0.0138 Use a calculator to find a decimal approximation.

14

15
14

15

14

15

ln( )14
15

5

f(t) = 15e−0.0138 t

Image by Design n Print from Pixabay
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We know that if your blood mercury level is initially at 15 /L, then the mercury
concentration can be modeled by the function  where  is time
in days.

To find out how long it will take to reach a safe level of 5.8 g/L, we need to find
 so that .

It appears that it will take roughly 69 days for the blood mercury concentration
to return to a safe level.

Biological Half-Life

It is very common to use the half-life model  to describe the

biological decay of substances in the body. To change our continuous decay
model for mercury into a half-life model, we must find  so that ,

where  is the initial concentration.

QUICK CHECK

1. Now that we know the model is , how do we figure
out the amount of time it will take to reach a safe level of 5.8 /L?

f(t) = 15e−0.0138 t

μ

μ

f(t) = 15e−0.0138 t t

μ
t f(t) = 5.8

5.8 = 15e−0.0138 t

= e−0.0138 t Divide both sides by 15 to isolate the exponential.

ln( ) = ln(e−0.0138t) Apply the natural log ln to both sides.

ln( ) = −0.0138t Use the inverse relationship ln(ex) = x.

= t Divide both sides by −0.0138.

t ≈ 68.85 Decimal approximation.

5.8

15
5.8
15

5.8

15

ln( )5.8
15

−0.0138

QUICK CHECK

1. How would this process have changed if you were asked to find the
biological half-life of mercury in the blood stream?

f(x) = a( )
x/c1

2

t f(t) = a1
2

a



This shows that the half-life of mercury in the body is about 50 days. By taking
, we conclude that the function

is the half-life model for mercury concentration that is equivalent to our earlier
continuous decay model. Both both produce the same values, they are just
written in different formats.

Looking Ahead

In our final section we will use technology to find models that fit larger sets of
data rather than doing the work by hand. Even so, the basic process will be the
same as what we've done in the past two sections.

We will always start by comparing the properties of the data with the behaviors
of functions we know so that we can choose an appropriate function model that
can be used to predict unknown values.

If the model predicts unreasonable values that do not make any sense, then we
should try to explain how we know the result is an error and why it might have
occurred. An analysis of the errors can often lead to the construction of a more
robust model.

⋅ 15 = 15e−0.0138t Start with continuous decay model from above.

= e−0.0138t Divide both sides by 15 to isolate the exponential.

ln( ) = ln(e−0.0138t) Apply the natural log ln to both sides.

ln( ) = −0.0138t Use the inverse relationship ln(ex) = x.

= t Divide both sides by −0.0138.

t ≈ 50.23 Use a calculator to find a decimal approximation.

1

2
1
2

1
2

1

2

ln( )1
2

−0.0138

c = 50

f(x) = 15( )
x/50

1

2



6.3 Using Technology to Model Data

Introduction

Throughout the vast grasslands of Nevada live herds of wild horses known as
"mustangs". The Bureau of Land Management (BLM) has been diligently
monitoring the number of mustangs and the land's capacity to support them
since 1971.

A function model of that data could be used to predict the future size of the
mustang herds, helping the BLM plan actions to help the herds thrive.

In this section, we will explore the process of creating function models using
large data sets and then we'll return to this scenario.

General Strategy

In the previous section we found functions by hand in situations were only two
data points were known. Creating a functional model from a larger dataset
involves several steps including borrowing a powerful tool from statistics called
regression.

While this might sound intimidating, we will utilize technology to do the hard
lifting, leaving us free to focus on the analysis. Here's our general strategy:

1. Align and/or Scale the Data: Before performing regression, consider
aligning and/or scaling the data to make it easier to work with. If you
encounter an "overflow" error when running regression in a later step,
consider coming back to this step and adjusting your data to more
manageable values.

2. Make a Scatterplot of the Data: A scatterplot will help you visually spot
trends in the data points, providing insight into the relationship between the
variables.

3. Compare the Shape of the Scatterplot to Known Functions: By
comparing the scatterplot's shape to the shapes of functions we are familiar
with (such as linear, exponential, or polynomial), we can get a rough idea of
which function might be the best fit.

Photo Steppinstars from Pixabay
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4. Use Software to Run Regressions for Different Functions: To find the
best-fitting model more precisely, use a graphing calculator or other
software to run regressions for the various functions you think match the
shape of the data.

5. Graph the Functions with the Data: After running regressions, plot the
resulting functions on the scatterplot alongside the actual data to visually
assess the accuracy of each model.

6. Investigate Potential Model Breakdowns: We'll examine instances
where the model might not accurately capture certain aspects of the data.
This investigation helps in refining the model and understanding its
limitations.

While a graphing calculator or other software can give you equations and values
(many of which are discussed in a full class on statistics), it can't see the data. It
can, for example, find the line that fits the data best, but it can't decide if a linear
model is an appropriate choice--that's up to you.

It's also important to point out that even when we can identify patterns and
show a correlation in data, that doesn't necessarily imply causation between the
two variables. For instance, we saw that time of day is connected to the number
of observed tornados, but that doesn't mean the clock generates tornadoes.
Establishing causality involves carefully designed and controlled experiments,
something we'll touch on in the next example.

Example: Kepler's Third Law

When Johannes Kepler came up with his theory for the orbit of planets in 1618,
he was only aware of six planets: Mercury, Venus, Earth, Mars, Jupiter and
Saturn. Kepler based his theory on measurements taken years earlier by Tycho
Brahe who spent his life making observations with the naked eye--he died 8
years before the telescope was invented!

Kepler struggled for 17 years to find a relationship between the time it takes a
planet to orbit the Sun (called its orbital period) and its average distance from
the Sun (called the semi-major axis). Let's see if we can't do something similar in
less than 17 minutes. We will show instructions for using a Texas Instruments
graphing calculator, but other calculators and software should have similar
commands available.

The table below lists the periods and distances for the 8 major planets in our
solar system.

Image by NASA
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Planet Distance from Sun (AU) Orbital Period (Years)

Mercury 0.39 0.24

Venus 0.72 0.62

Earth 1 1

Mars 1.52 1.88

Jupiter 5.20 11.86

Saturn 9.54 29.46

Uranus 19.19 84.07

Neptune 30.06 164.81

We start by entering the data into a calculator

and taking a look at the scatterplot. Using 9: ZoomStat  gives a good viewing
window.

The scatterplot looks like it could be an increasing power function, so we run
PwrReg

and get back the equation . Graphing this equation along with our
scatterplot shows that it is a very good fit.

y = x1.5



Kepler found this same equation over 400 years ago. When he unveiled his
findings, Kepler stated, "It is absolutely certain and exact that the proportion
between the periodic times of any two planets is precisely the sesquialternate
proportion of the mean distances." The term 'sesquialternate proportion' is a
way of expressing the power of  using the language of proportionality, a
concept we previously explored in Chapter 2.

All that remains is for us to turn this into a model by adding a description to our
equation.

The orbital period  of a planet, in years, can be modeled by the equation

where  is the distance of the planet from the Sun in astronomical units (AU).

Remember that including the units of the variables is an essential part of making
a model. If the data had been measured in days instead of years, or miles
instead of astronomical units, then the equation would be different.
Understanding the units and their relevance in the model is crucial when using
the model to make predictions.

3/2

P

P = D3/2

D

QUICK CHECK

Kepler discovered his third law by studying planets. Below are the values
for some objects in our solar system that are not planets.

Celestial
Object

Distance from
Sun (AU)

Orbital Period
(Years)

Chiron (a
centaur)

13.71 50.76

Haley's Comet 17.80 75.30

Pluto (a dwarf
planet)

39.26 248.09

Eris (a dwarf
planet)

68.01 560.90

Does Kepler's 3rd law work for these objects as well? In other words, if
you insert a value for  into the equation  does the resulting
value for  match the table?

D P = D3/2

P
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Example: Allometry

In the natural sciences, many aspects of an organism's life are connected to its
size. Life expectancy, brain size, gestational period, metabolic rate, just to name
a few, all depend on body mass. The study of the relationship of body size to
shape, anatomy, physiology and behavior is called "allometry".

For example, the accompanying table shows the weight and cruising speed of
several birds.

Bird Weight (lbs) Speed (mph)
Common Tern 0.26 18
Antartic Prion 0.38 22
Black-Headed Gull 0.52 20
Black Skimmer 0.67 21
Common Gull 0.83 21
Kittiwake 0.88 23
Royal Tern 1.06 24
Fulmar 1.84 30
Herring Tern 2.11 26
Great Skua 3.03 29
Great Black-Billed Gull 4.32 31
Sooty Albatross 6.29 33
Black-Browed Albatross 8.54 38
Wandering Albatross 19.56 43

Data adapted from The Simple Science of Flight by Henk Tennekes

A scatterplot of the data suggests that a slowly increasing power function with
, which would have a shape similar to the square root function, might

model the data well.
0 < p < 1

Photo by James Youn on Unsplash
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To use the interactive figure visit https://www.geogebra.org/m/ZnU6AiQr

Running the PwrReg  program gives  as the best fit,
confirming our initial observation that .

We can use this function to predict the flying speed of other animals based on
their weight. For instance, the giant golden-crowned flying fox is one of the
heaviest bat species, with some individuals weighing up to  pounds. Our
model predicts that a  pound flying fox has an optimal flying speed of

.

Check Multiple Models

In the last two examples we identified the scatterplots as a power functions. This
isn't surprising, since power functions can grow quickly (when ), grow
slowly (when ) and decay (when ).

f(x) = 23.66x0.2

0 < p < 1

3.1
3.1

f(3.1) = 23.66(3.1)0.2 = 29.67 mph

QUICK CHECK

Check to see if this function works for an airplane like the Cessna 172
Skyhawk, which has a cruising speed of  and weighs

.
140 mph

2300 pounds

p > 1
0 < p < 1 p < 0

https://www.geogebra.org/m/ZnU6AiQr
https://www.geogebra.org/m/ZnU6AiQr
https://www.geogebra.org/m/ZnU6AiQr


1

1

 p<0

 0<p<1

 p>1

However, it would have been better to check multiple function models. For
example, the scatterplot below looks similar to Kepler's data, but no mater
which values you choose for  and , no power function will ever fit the
curvature of the data.

To use the interactive figure visit https://www.geogebra.org/m/Rv4EWJmR

In particular, it's very easy to mistakenly identify data with exponential,
logarithmic or even logistic trends as being power functions. You can see the
similarities in the three data sets below.

k p

https://www.geogebra.org/m/Rv4EWJmR
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Logistic DataExponential Data Logarithmic Data

It's always best practice to try more than one type of function model to see
which fits best.



QUICK CHECK

The following scatterplots have shapes similar to functions that have been
discussed in earlier chapters. Discuss which functions could fit the data
well.

1. 

2. 

3. 



Example: Standing Mile

In the summer of 2005, Road and Track magazine gathered 13 cars, 1
motorcycle, and a Navy F/A-18 Hornet fighter jet for a one-mile long acceleration
test at the Lemoore Naval Air Base in California. This started a trend and
"standing mile" events are now held around the country.

At this event, the first-placed Lola Champ Car (yellow car on the bottom right)
crossed the finish line in just 24.2 seconds! The following table show how long it
took the Lola to reach different speeds.

Time (sec) Speed (mph)

3.1 60

5.6 100

8.6 150

9.9 161.4

22 200

24.2 203.3

Can we find a function that fits this data? As always, we start by creating a
scatterplot.

4. 
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Looking at the scatterplot helps us narrow down the list of possible models. For
instance, the data does not appear to be linear, so no attempt will be made at
running LinReg  and trying to fit a line to the data.

The equations and graphs for natural log regression LnReg , logistic regression
Logistic , and quadratic regression QuadReg  are shown below.

All three functions are reasonably close to all of the data points, so how do we
pick the best? We'll have to rely on our personal knowledge about how vehicles
behave as they accelerate to their top speed. We would expect the speed to rise
quickly and then level off at the top speed. The only model that has this behavior
is the logistic function, so we choose it as the best fit.

Example: K-12 Administration

The majority of teachers in primary education (K-12) are women. However,
positions in K-12 administration, such as principal or superintendent, are more
frequently held by men. The following data, from Indiana's department of
education, shows the percent of women in K-12 administration.

QUICK CHECK

Of all the functions you've seen, which one(s) do you think have a shape
similar to the data in this scatterplot?

https://pixabay.com/images/id-2773007/
https://pixabay.com/images/id-2773007/


Year % of women administrators

1990 18.3

1992 22.8

1994 26.7

1996 30.2



Year % of women administrators

1998 32.5

2000 34.4

2002 36.3

2004 37.8

2006 39.3

A scatterplot of the data shows an increasing, concave down trend.

Due to the shape, we can eliminate linear and exponential models from
consideration.

Based on the curve of the data, it seems that we should run a logistic regression
Logistic , a logarithmic regression LnReg , and a power regression
PwrReg .

Before running any regressions, we often align the data first. In this case, it
would seem natural to let  represent years since 1990. However, that would
give us a value of  and both logarithmic and power regression need -
values larger than . To adjust for that, we'll let  represent years since 1989.
Now all of our  values are positive.

QUICK CHECK

Based on the shape of the data in the scatterplot, which types of functions
do you think could be the best fit?

x
x = 0 x
0 x

x



Years since 1989 % of women administrators

1 18.3

3 22.8

5 26.7

7 30.2

9 32.5

11 34.4

13 36.3

15 37.8

17 39.3

The results of the three chosen regressions are shown below.

All three models match the data fairly well. However, the logistic function has a
significant flaw. Remember that the carrying capacity  is a horizontal
asymptote. In this case, the logistic model would never allow the percent of
female administrators to exceed .

Consequently, either the logarithmic or the power models might be better
predictors of future trends.

Example: Redmond, Oregon

c

40.866%

Photo of Smith Rock by Unsettler on Flickr
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With stunning mountain views, snowy winters, warm summers and world-class
outdoor activities, Redmond is one of the fastest growing cities in Oregon. The
following table shows the population growth since 1970.

Before choosing a model we should plot the data and see what it looks like. To
make it easier, we will use years since 1970 rather than the actual year.

The data appears to increase, slow down, and then increase again, like a
polynomial function. In generally, if you notice a pattern with  turns in the data
you can model it effectively with an  degree polynomial. Since the data
appears to have two turns, a cubic polynomial might be a good fit.

Running CubicReg  on a calculator

gives a cubic polynomial which does fit the data well, coming very close to most
of the data points.

But what if we try a higher degree polynomial? Most calculators can do up to 4th
degree polynomial regression QuarticReg  and programs are available that
can do polynomials with even higher degrees. The results of running
QuarticReg

show that the quartic polynomial is a perfect fit! It hits every single point
precisely.

So the 4th degree polynomial must be a better model than the 3rd degree
polynomial, right? Maybe not.

Year Population

1970 3721

1980 6452

1990 7165

2000 13481

2010 26216

n
n − 1



Notice that our quartic model has a negative leading coefficient. Because of that
the right side of the graph must eventually come down. Zooming out makes this
easier to see.

While the quartic model could be a good model for a few years, it is obviously a
poor predictor for the population of Redmond in the distant future, especially
since it eventually gives negative population values (and you can't have less than

 people living somewhere).

Keeping an eye on when your model might predict unreasonable values is
always important. It's even a good idea to specify a particular domain for your
model. For instance, if the Census counts the population every 10 years, there's
no reason to keep this model any longer than that.

Example: Wild Mustangs

0

QUICK CHECK

The equation of our cubic model for Redmond's population is

and the quartic model's equation is

Use those to predict the population of Redmond in 2020.

y = 0.70x3 − 23.89x2 + 393.10x + 3818.21

y = −0.028x4 + 2.97x3 − 79.38x2 + 798.16x + 3721
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We're now ready to return to the example at the start of this section. Every year
the BLM conducts aerial surveys in an effort to get an accurate count of the
mustangs in Nevada.

When the number of horses exceeds a sustainable level, the BLM takes action by
gathering animals from overpopulated herds and making them available to the
public for adoption.

The table below gives the total number of mustangs in Nevada from 2000 to
2011.

Notice that he population decreased and then started to increase, so it seems
reasonable that a quadratic function might fit the data.

Since this is our final example, we will approach this two ways. First we will try
using transformations to make a quadratic model in the vertex form like we did
in section 6.1. Then we'll use regression and will show all the steps for using a
Texas-Instruments TI83 or TI84 graphing calculators. Since a quadratic function
has  parameters, we will not use the algebraic methods of section 6.2 since we
do not have the tools for large systems of equations.

To hunt for a quadratic model in the vertex form, adjust the values of ,  and 
in the figure below.

To use the interactive figure visit https://www.geogebra.org/m/FdLFe4II

With data sets like this one it is hard to know which combination of
transformations will make the curve fit the data the best. It will be easier to let
technology find the equation for us.

To enter the data into the calculator we press the STAT  button and select 1:

Edit .

The data is entered into the L1  and L2  lists, with the independent values
in L1  and the dependent values in L2 .

3

a h k
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To view the scatterplot, press 2ND  and Y=  to enter the STAT PLOTS
menu, then select the first plot and make sure it is turned on.

Using 9:ZoomStat  in the ZOOM  menu gives a good viewing window for the
data.

Once we have confirmed the shape of the data, we go back to the STAT  menu
and this time choose the CALC  tab.

This reveals all of the regression models built into the calculator, letting us
choose the model that we think visually matches the shape of the data. Since
this data looks like the square function, we choose 5: QuadReg . If the data
had looked like a line then 4: LinReg(ax+b)  would have been a good choice.

After running 5: QuadReg  we are shown the equation that fits the data.



The result is given in the standard form  rather than in the
vertex form we used when trying to fit the data by hand. Copying this equation
into the graphing window shows that it fits the data reasonably well.

We could now use the equation  as the basis
for a model of the wild mustang population in Nevada.

It bears repeating that a mathematical model is not the same as the real object,
nor does it control the behavior of the real thing. For instance, this model might
predict the future number of wild mustangs, but it is not a guarantee of what
will happen.

y = ax2 + bx + c

y = 239.8x2 − 3147.9x + 24397.8
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